Landlock LSM: kernel documentation¶
- Author:
Mickaël Salaün
- Date:
September 2022
Landlock’s goal is to create scoped access-control (i.e. sandboxing). To harden a whole system, this feature should be available to any process, including unprivileged ones. Because such process may be compromised or backdoored (i.e. untrusted), Landlock’s features must be safe to use from the kernel and other processes point of view. Landlock’s interface must therefore expose a minimal attack surface.
Landlock is designed to be usable by unprivileged processes while following the system security policy enforced by other access control mechanisms (e.g. DAC, LSM). Indeed, a Landlock rule shall not interfere with other access-controls enforced on the system, only add more restrictions.
Any user can enforce Landlock rulesets on their processes. They are merged and evaluated according to the inherited ones in a way that ensures that only more constraints can be added.
User space documentation can be found here: Landlock: unprivileged access control.
Guiding principles for safe access controls¶
A Landlock rule shall be focused on access control on kernel objects instead of syscall filtering (i.e. syscall arguments), which is the purpose of seccomp-bpf.
To avoid multiple kinds of side-channel attacks (e.g. leak of security policies, CPU-based attacks), Landlock rules shall not be able to programmatically communicate with user space.
Kernel access check shall not slow down access request from unsandboxed processes.
Computation related to Landlock operations (e.g. enforcing a ruleset) shall only impact the processes requesting them.
Design choices¶
Filesystem access rights¶
All access rights are tied to an inode and what can be accessed through it.
Reading the content of a directory does not imply to be allowed to read the
content of a listed inode. Indeed, a file name is local to its parent
directory, and an inode can be referenced by multiple file names thanks to
(hard) links. Being able to unlink a file only has a direct impact on the
directory, not the unlinked inode. This is the reason why
LANDLOCK_ACCESS_FS_REMOVE_FILE
or LANDLOCK_ACCESS_FS_REFER
are not
allowed to be tied to files but only to directories.
Tests¶
Userspace tests for backward compatibility, ptrace restrictions and filesystem support can be found here: tools/testing/selftests/landlock/.
Kernel structures¶
Object¶
-
struct landlock_object_underops¶
Operations on an underlying object
Definition
struct landlock_object_underops {
void (*release)(struct landlock_object *const object) __releases(object->lock);
};
Members
release
Releases the underlying object (e.g.
iput()
for an inode).
-
struct landlock_object¶
Security blob tied to a kernel object
Definition
struct landlock_object {
refcount_t usage;
spinlock_t lock;
void *underobj;
union {
struct rcu_head rcu_free;
const struct landlock_object_underops *underops;
};
};
Members
usage
This counter is used to tie an object to the rules matching it or to keep it alive while adding a new rule. If this counter reaches zero, this struct must not be modified, but this counter can still be read from within an RCU read-side critical section. When adding a new rule to an object with a usage counter of zero, we must wait until the pointer to this object is set to NULL (or recycled).
lock
Protects against concurrent modifications. This lock must be held from the time usage drops to zero until any weak references from underobj to this object have been cleaned up.
Lock ordering: inode->i_lock nests inside this.
underobj
Used when cleaning up an object and to mark an object as tied to its underlying kernel structure. This pointer is protected by lock. Cf. landlock_release_inodes() and release_inode().
{unnamed_union}
anonymous
rcu_free
Enables lockless use of usage, lock and underobj from within an RCU read-side critical section. rcu_free and underops are only used by landlock_put_object().
underops
Enables landlock_put_object() to release the underlying object (e.g. inode).
Description
The goal of this structure is to enable to tie a set of ephemeral access rights (pertaining to different domains) to a kernel object (e.g an inode) in a safe way. This implies to handle concurrent use and modification.
The lifetime of a struct landlock_object
depends on the rules referring to
it.
Filesystem¶
-
struct landlock_inode_security¶
Inode security blob
Definition
struct landlock_inode_security {
struct landlock_object __rcu *object;
};
Members
object
Weak pointer to an allocated object. All assignments of a new object are protected by the underlying inode->i_lock. However, atomically disassociating object from the inode is only protected by object->lock, from the time object’s usage refcount drops to zero to the time this pointer is nulled out (cf. release_inode() and hook_sb_delete()). Indeed, such disassociation doesn’t require inode->i_lock thanks to the careful
rcu_access_pointer()
check performed by get_inode_object().
Description
Enable to reference a struct landlock_object
tied to an inode (i.e.
underlying object).
-
struct landlock_superblock_security¶
Superblock security blob
Definition
struct landlock_superblock_security {
atomic_long_t inode_refs;
};
Members
inode_refs
Number of pending inodes (from this superblock) that are being released by release_inode(). Cf. struct super_block->s_fsnotify_inode_refs .
Description
Enable hook_sb_delete() to wait for concurrent calls to release_inode().
Ruleset and domain¶
A domain is a read-only ruleset tied to a set of subjects (i.e. tasks’ credentials). Each time a ruleset is enforced on a task, the current domain is duplicated and the ruleset is imported as a new layer of rules in the new domain. Indeed, once in a domain, each rule is tied to a layer level. To grant access to an object, at least one rule of each layer must allow the requested action on the object. A task can then only transit to a new domain that is the intersection of the constraints from the current domain and those of a ruleset provided by the task.
The definition of a subject is implicit for a task sandboxing itself, which makes the reasoning much easier and helps avoid pitfalls.
-
struct landlock_layer¶
Access rights for a given layer
Definition
struct landlock_layer {
u16 level;
access_mask_t access;
};
Members
level
Position of this layer in the layer stack.
access
Bitfield of allowed actions on the kernel object. They are relative to the object type (e.g.
LANDLOCK_ACTION_FS_READ
).
-
struct landlock_rule¶
Access rights tied to an object
Definition
struct landlock_rule {
struct rb_node node;
struct landlock_object *object;
u32 num_layers;
struct landlock_layer layers[];
};
Members
node
Node in the ruleset’s red-black tree.
object
Pointer to identify a kernel object (e.g. an inode). This is used as a key for this ruleset element. This pointer is set once and never modified. It always points to an allocated object because each rule increments the refcount of its object.
num_layers
Number of entries in layers.
layers
Stack of layers, from the latest to the newest, implemented as a flexible array member (FAM).
-
struct landlock_hierarchy¶
Node in a ruleset hierarchy
Definition
struct landlock_hierarchy {
struct landlock_hierarchy *parent;
refcount_t usage;
};
Members
parent
Pointer to the parent node, or NULL if it is a root Landlock domain.
usage
Number of potential children domains plus their parent domain.
-
struct landlock_ruleset¶
Landlock ruleset
Definition
struct landlock_ruleset {
struct rb_root root;
struct landlock_hierarchy *hierarchy;
union {
struct work_struct work_free;
struct {
struct mutex lock;
refcount_t usage;
u32 num_rules;
u32 num_layers;
access_mask_t fs_access_masks[];
};
};
};
Members
root
Root of a red-black tree containing
struct landlock_rule
nodes. Once a ruleset is tied to a process (i.e. as a domain), this tree is immutable until usage reaches zero.hierarchy
Enables hierarchy identification even when a parent domain vanishes. This is needed for the ptrace protection.
{unnamed_union}
anonymous
work_free
Enables to free a ruleset within a lockless section. This is only used by landlock_put_ruleset_deferred() when usage reaches zero. The fields lock, usage, num_rules, num_layers and fs_access_masks are then unused.
{unnamed_struct}
anonymous
lock
Protects against concurrent modifications of root, if usage is greater than zero.
usage
Number of processes (i.e. domains) or file descriptors referencing this ruleset.
num_rules
Number of non-overlapping (i.e. not for the same object) rules in this ruleset.
num_layers
Number of layers that are used in this ruleset. This enables to check that all the layers allow an access request. A value of 0 identifies a non-merged ruleset (i.e. not a domain).
fs_access_masks
Contains the subset of filesystem actions that are restricted by a ruleset. A domain saves all layers of merged rulesets in a stack (FAM), starting from the first layer to the last one. These layers are used when merging rulesets, for user space backward compatibility (i.e. future-proof), and to properly handle merged rulesets without overlapping access rights. These layers are set once and never changed for the lifetime of the ruleset.
Description
This data structure must contain unique entries, be updatable, and quick to match an object.