GEOS 3.11.1
d2s_intrinsics.h
1// Copyright 2018 Ulf Adams
2//
3// The contents of this file may be used under the terms of the Apache License,
4// Version 2.0.
5//
6// (See accompanying file LICENSE-Apache or copy at
7// http://www.apache.org/licenses/LICENSE-2.0)
8//
9// Alternatively, the contents of this file may be used under the terms of
10// the Boost Software License, Version 1.0.
11// (See accompanying file LICENSE-Boost or copy at
12// https://www.boost.org/LICENSE_1_0.txt)
13//
14// Unless required by applicable law or agreed to in writing, this software
15// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
16// KIND, either express or implied.
17#ifndef RYU_D2S_INTRINSICS_H
18#define RYU_D2S_INTRINSICS_H
19
20#include <assert.h>
21#include <stdint.h>
22
23// Defines RYU_32_BIT_PLATFORM if applicable.
24#include "ryu/common.h"
25
26// ABSL avoids uint128_t on Win32 even if __SIZEOF_INT128__ is defined.
27// Let's do the same for now.
28#if defined(__SIZEOF_INT128__) && !defined(_MSC_VER) && !defined(RYU_ONLY_64_BIT_OPS)
29#define HAS_UINT128
30#elif defined(_MSC_VER) && !defined(RYU_ONLY_64_BIT_OPS) && defined(_M_X64)
31#define HAS_64_BIT_INTRINSICS
32#endif
33
34#if defined(HAS_UINT128)
35typedef __uint128_t uint128_t;
36#endif
37
38#if defined(HAS_64_BIT_INTRINSICS)
39
40#include <intrin.h>
41
42static inline uint64_t umul128(const uint64_t a, const uint64_t b, uint64_t* const productHi) {
43 return _umul128(a, b, productHi);
44}
45
46static inline uint64_t shiftright128(const uint64_t lo, const uint64_t hi, const uint32_t dist) {
47 // For the __shiftright128 intrinsic, the shift value is always
48 // modulo 64.
49 // In the current implementation of the double-precision version
50 // of Ryu, the shift value is always < 64. (In the case
51 // RYU_OPTIMIZE_SIZE == 0, the shift value is in the range [49, 58].
52 // Otherwise in the range [2, 59].)
53 // Check this here in case a future change requires larger shift
54 // values. In this case this function needs to be adjusted.
55 assert(dist < 64);
56 return __shiftright128(lo, hi, (unsigned char) dist);
57}
58
59#else // defined(HAS_64_BIT_INTRINSICS)
60
61static inline uint64_t umul128(const uint64_t a, const uint64_t b, uint64_t* const productHi) {
62 // The casts here help MSVC to avoid calls to the __allmul library function.
63 const uint32_t aLo = (uint32_t)a;
64 const uint32_t aHi = (uint32_t)(a >> 32);
65 const uint32_t bLo = (uint32_t)b;
66 const uint32_t bHi = (uint32_t)(b >> 32);
67
68 const uint64_t b00 = (uint64_t)aLo * bLo;
69 const uint64_t b01 = (uint64_t)aLo * bHi;
70 const uint64_t b10 = (uint64_t)aHi * bLo;
71 const uint64_t b11 = (uint64_t)aHi * bHi;
72
73 const uint32_t b00Lo = (uint32_t)b00;
74 const uint32_t b00Hi = (uint32_t)(b00 >> 32);
75
76 const uint64_t mid1 = b10 + b00Hi;
77 const uint32_t mid1Lo = (uint32_t)(mid1);
78 const uint32_t mid1Hi = (uint32_t)(mid1 >> 32);
79
80 const uint64_t mid2 = b01 + mid1Lo;
81 const uint32_t mid2Lo = (uint32_t)(mid2);
82 const uint32_t mid2Hi = (uint32_t)(mid2 >> 32);
83
84 const uint64_t pHi = b11 + mid1Hi + mid2Hi;
85 const uint64_t pLo = ((uint64_t)mid2Lo << 32) | b00Lo;
86
87 *productHi = pHi;
88 return pLo;
89}
90
91static inline uint64_t shiftright128(const uint64_t lo, const uint64_t hi, const uint32_t dist) {
92 // We don't need to handle the case dist >= 64 here (see above).
93 assert(dist < 64);
94#if defined(RYU_OPTIMIZE_SIZE) || !defined(RYU_32_BIT_PLATFORM)
95 assert(dist > 0);
96 return (hi << (64 - dist)) | (lo >> dist);
97#else
98 // Avoid a 64-bit shift by taking advantage of the range of shift values.
99 assert(dist >= 32);
100 return (hi << (64 - dist)) | ((uint32_t)(lo >> 32) >> (dist - 32));
101#endif
102}
103
104#endif // defined(HAS_64_BIT_INTRINSICS)
105
106#if defined(RYU_32_BIT_PLATFORM)
107
108// Returns the high 64 bits of the 128-bit product of a and b.
109static inline uint64_t umulh(const uint64_t a, const uint64_t b) {
110 // Reuse the umul128 implementation.
111 // Optimizers will likely eliminate the instructions used to compute the
112 // low part of the product.
113 uint64_t hi;
114 umul128(a, b, &hi);
115 return hi;
116}
117
118// On 32-bit platforms, compilers typically generate calls to library
119// functions for 64-bit divisions, even if the divisor is a constant.
120//
121// E.g.:
122// https://bugs.llvm.org/show_bug.cgi?id=37932
123// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=17958
124// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=37443
125//
126// The functions here perform division-by-constant using multiplications
127// in the same way as 64-bit compilers would do.
128//
129// NB:
130// The multipliers and shift values are the ones generated by clang x64
131// for expressions like x/5, x/10, etc.
132
133static inline uint64_t div5(const uint64_t x) {
134 return umulh(x, 0xCCCCCCCCCCCCCCCDu) >> 2;
135}
136
137static inline uint64_t div10(const uint64_t x) {
138 return umulh(x, 0xCCCCCCCCCCCCCCCDu) >> 3;
139}
140
141static inline uint64_t div100(const uint64_t x) {
142 return umulh(x >> 2, 0x28F5C28F5C28F5C3u) >> 2;
143}
144
145static inline uint64_t div1e8(const uint64_t x) {
146 return umulh(x, 0xABCC77118461CEFDu) >> 26;
147}
148
149static inline uint64_t div1e9(const uint64_t x) {
150 return umulh(x >> 9, 0x44B82FA09B5A53u) >> 11;
151}
152
153static inline uint32_t mod1e9(const uint64_t x) {
154 // Avoid 64-bit math as much as possible.
155 // Returning (uint32_t) (x - 1000000000 * div1e9(x)) would
156 // perform 32x64-bit multiplication and 64-bit subtraction.
157 // x and 1000000000 * div1e9(x) are guaranteed to differ by
158 // less than 10^9, so their highest 32 bits must be identical,
159 // so we can truncate both sides to uint32_t before subtracting.
160 // We can also simplify (uint32_t) (1000000000 * div1e9(x)).
161 // We can truncate before multiplying instead of after, as multiplying
162 // the highest 32 bits of div1e9(x) can't affect the lowest 32 bits.
163 return ((uint32_t) x) - 1000000000 * ((uint32_t) div1e9(x));
164}
165
166#else // defined(RYU_32_BIT_PLATFORM)
167
168static inline uint64_t div5(const uint64_t x) {
169 return x / 5;
170}
171
172static inline uint64_t div10(const uint64_t x) {
173 return x / 10;
174}
175
176static inline uint64_t div100(const uint64_t x) {
177 return x / 100;
178}
179
180static inline uint64_t div1e8(const uint64_t x) {
181 return x / 100000000;
182}
183
184static inline uint64_t div1e9(const uint64_t x) {
185 return x / 1000000000;
186}
187
188static inline uint32_t mod1e9(const uint64_t x) {
189 return (uint32_t) (x - 1000000000 * div1e9(x));
190}
191
192#endif // defined(RYU_32_BIT_PLATFORM)
193
194static inline uint32_t pow5Factor(uint64_t value) {
195 uint32_t count = 0;
196 for (;;) {
197 assert(value != 0);
198 const uint64_t q = div5(value);
199 const uint32_t r = ((uint32_t) value) - 5 * ((uint32_t) q);
200 if (r != 0) {
201 break;
202 }
203 value = q;
204 ++count;
205 }
206 return count;
207}
208
209// Returns true if value is divisible by 5^p.
210static inline bool multipleOfPowerOf5(const uint64_t value, const uint32_t p) {
211 // I tried a case distinction on p, but there was no performance difference.
212 return pow5Factor(value) >= p;
213}
214
215// Returns true if value is divisible by 2^p.
216static inline bool multipleOfPowerOf2(const uint64_t value, const uint32_t p) {
217 assert(value != 0);
218 // return __builtin_ctzll(value) >= p;
219 return (value & ((1ull << p) - 1)) == 0;
220}
221
222#endif // RYU_D2S_INTRINSICS_H