GEOS 3.11.1
Public Types | Public Member Functions | Static Public Attributes | Friends | List of all members
geos::geom::PrecisionModel Class Reference

Specifies the precision model of the Coordinate in a Geometry. More...

#include <geos.h>

Public Types

enum  Type { FIXED , FLOATING , FLOATING_SINGLE }
 The types of Precision Model which GEOS supports. More...
 

Public Member Functions

 PrecisionModel (void)
 Creates a PrecisionModel with a default precision of FLOATING.
 
 PrecisionModel (Type nModelType)
 
 PrecisionModel (double newScale, double newOffsetX, double newOffsetY)
 Creates a PrecisionModel with Fixed precision. More...
 
 PrecisionModel (double newScale)
 Creates a PrecisionModel with Fixed precision. More...
 
double makePrecise (double val) const
 Rounds a numeric value to the PrecisionModel grid. More...
 
void makePrecise (Coordinate &coord) const
 Rounds the given Coordinate to the PrecisionModel grid.
 
void makePrecise (Coordinate *coord) const
 
bool isFloating () const
 
int getMaximumSignificantDigits () const
 Returns the maximum number of significant digits provided by this precision model. More...
 
Type getType () const
 
double getScale () const
 Returns the multiplying factor used to obtain a precise coordinate.
 
double getGridSize () const
 
double getOffsetX () const
 
double getOffsetY () const
 
std::string toString () const
 
int compareTo (const PrecisionModel *other) const
 Compares this PrecisionModel object with the specified object for order. More...
 

Static Public Attributes

static const double maximumPreciseValue
 

Friends

class io::Unload
 

Detailed Description

Specifies the precision model of the Coordinate in a Geometry.

In other words, specifies the grid of allowable points for a Geometry. A precision model may be floating (PrecisionModel::Type::FLOATING or PrecisionModel::Type::FLOATING_SINGLE), in which case normal floating-point value semantics apply.

For a PrecisionModel::Type::FIXED precision model the makePrecise(geom::Coordinate) method allows rounding a coordinate to a "precise" value; that is, one whose precision is known exactly.

Coordinates are assumed to be precise in geometries. That is, the coordinates are assumed to be rounded to the precision model given for the geometry. All internal operations assume that coordinates are rounded to the precision model. Constructive methods (such as boolean operations) always round computed coordinates to the appropriate precision model.

Three types of precision model are supported:

For example, to specify 3 decimal places of precision, use a scale factor of 1000. To specify -3 decimal places of precision (i.e. rounding to the nearest 1000), use a scale factor of 0.001.

It is also supported to specify a precise grid size by providing it as a negative scale factor. This allows setting a precise grid size rather than using a fractional scale, which provides more accurate and robust rounding. For example, to specify rounding to the nearest 1000 use a scale factor of -1000.

Coordinates are represented internally as Java double-precision values. Java uses the IEEE-394 floating point standard, which provides 53 bits of precision. (Thus the maximum precisely representable integer is 9,007,199,254,740,992).

Member Enumeration Documentation

◆ Type

The types of Precision Model which GEOS supports.

Enumerator
FIXED 

Fixed Precision indicates that coordinates have a fixed number of decimal places. The number of decimal places is determined by the log10 of the scale factor.

FLOATING 

Floating precision corresponds to the standard Java double-precision floating-point representation, which is based on the IEEE-754 standard

FLOATING_SINGLE 

Floating single precision corresponds to the standard Java single-precision floating-point representation, which is based on the IEEE-754 standard

Constructor & Destructor Documentation

◆ PrecisionModel() [1/3]

geos::geom::PrecisionModel::PrecisionModel ( Type  nModelType)

Creates a PrecisionModel specifying an explicit precision model type.

If the model type is FIXED the scale factor will default to 1.

Parameters
nModelTypethe type of the precision model

◆ PrecisionModel() [2/3]

geos::geom::PrecisionModel::PrecisionModel ( double  newScale,
double  newOffsetX,
double  newOffsetY 
)

Creates a PrecisionModel with Fixed precision.

Fixed-precision coordinates are represented as precise internal coordinates, which are rounded to the grid defined by the scale factor.

Parameters
newScaleamount by which to multiply a coordinate after subtracting the offset, to obtain a precise coordinate
newOffsetXnot used.
newOffsetYnot used.
Deprecated:
offsets are no longer supported, since internal representation is rounded floating point

◆ PrecisionModel() [3/3]

geos::geom::PrecisionModel::PrecisionModel ( double  newScale)

Creates a PrecisionModel with Fixed precision.

Fixed-precision coordinates are represented as precise internal coordinates which are rounded to the grid defined by the scale factor. The provided scale may be negative, to specify an exact grid size. The scale is then computed as the reciprocal.

Parameters
newScaleamount by which to multiply a coordinate after subtracting the offset, to obtain a precise coordinate. Must be non-zero.

Member Function Documentation

◆ compareTo()

int geos::geom::PrecisionModel::compareTo ( const PrecisionModel other) const

Compares this PrecisionModel object with the specified object for order.

A PrecisionModel is greater than another if it provides greater precision. The comparison is based on the value returned by the getMaximumSignificantDigits method. This comparison is not strictly accurate when comparing floating precision models to fixed models; however, it is correct when both models are either floating or fixed.

Parameters
otherthe PrecisionModel with which this PrecisionModel is being compared
Returns
a negative integer, zero, or a positive integer as this PrecisionModel is less than, equal to, or greater than the specified PrecisionModel.

◆ getGridSize()

double geos::geom::PrecisionModel::getGridSize ( ) const
inline

Computes the grid size for a fixed precision model. This is equal to the reciprocal of the scale factor. If the grid size has been set explicity (via a negative scale factor) it will be returned.

Returns
the grid size at a fixed precision scale.

◆ getMaximumSignificantDigits()

int geos::geom::PrecisionModel::getMaximumSignificantDigits ( ) const

Returns the maximum number of significant digits provided by this precision model.

Intended for use by routines which need to print out precise values.

Returns
the maximum number of decimal places provided by this precision model

◆ getOffsetX()

double geos::geom::PrecisionModel::getOffsetX ( ) const

Returns the x-offset used to obtain a precise coordinate.

Returns
the amount by which to subtract the x-coordinate before multiplying by the scale
Deprecated:
Offsets are no longer used

◆ getOffsetY()

double geos::geom::PrecisionModel::getOffsetY ( ) const

Returns the y-offset used to obtain a precise coordinate.

Returns
the amount by which to subtract the y-coordinate before multiplying by the scale
Deprecated:
Offsets are no longer used

◆ getType()

Type geos::geom::PrecisionModel::getType ( ) const
inline

Gets the type of this PrecisionModel

Returns
the type of this PrecisionModel

◆ isFloating()

bool geos::geom::PrecisionModel::isFloating ( ) const

Tests whether the precision model supports floating point

Returns
true if the precision model supports floating point

◆ makePrecise()

double geos::geom::PrecisionModel::makePrecise ( double  val) const

Rounds a numeric value to the PrecisionModel grid.

Asymmetric Arithmetic Rounding is used, to provide uniform rounding behaviour no matter where the number is on the number line.

Note: Java's Math::rint uses the "Banker's Rounding" algorithm, which is not suitable for precision operations elsewhere in JTS.

Member Data Documentation

◆ maximumPreciseValue

const double geos::geom::PrecisionModel::maximumPreciseValue
static

The maximum precise value representable in a double.

Since IEE754 double-precision numbers allow 53 bits of mantissa, the value is equal to 2^53 - 1. This provides almost 16 decimal digits of precision.


The documentation for this class was generated from the following file: