GEOS 3.11.1
TemplateSTRtree.h
1/**********************************************************************
2 *
3 * GEOS - Geometry Engine Open Source
4 * http://geos.osgeo.org
5 *
6 * Copyright (C) 2020-2021 Daniel Baston
7 *
8 * This is free software; you can redistribute and/or modify it under
9 * the terms of the GNU Lesser General Public Licence as published
10 * by the Free Software Foundation.
11 * See the COPYING file for more information.
12 *
13 **********************************************************************/
14
15#pragma once
16
17#include <geos/geom/Geometry.h>
18#include <geos/index/SpatialIndex.h> // for inheritance
19#include <geos/index/chain/MonotoneChain.h>
20#include <geos/index/ItemVisitor.h>
21#include <geos/util.h>
22
23#include <geos/index/strtree/TemplateSTRNode.h>
24#include <geos/index/strtree/TemplateSTRNodePair.h>
25#include <geos/index/strtree/TemplateSTRtreeDistance.h>
26#include <geos/index/strtree/Interval.h>
27
28#include <vector>
29#include <queue>
30#include <mutex>
31
32namespace geos {
33namespace index {
34namespace strtree {
35
56template<typename ItemType, typename BoundsTraits>
58public:
59 using Node = TemplateSTRNode<ItemType, BoundsTraits>;
60 using NodeList = std::vector<Node>;
61 using NodeListIterator = typename NodeList::iterator;
62 using BoundsType = typename BoundsTraits::BoundsType;
63
64 class Iterator {
65 public:
66 using iterator_category = std::forward_iterator_tag;
67 using value_type = ItemType;
68 using difference_type = typename NodeList::const_iterator::difference_type;
69 using pointer = ItemType*;
70 using reference = ItemType&;
71
72 Iterator(typename NodeList::const_iterator&& iter,
73 typename NodeList::const_iterator&& end) : m_iter(iter), m_end(end) {
74 skipDeleted();
75 }
76
77 const ItemType& operator*() const {
78 return m_iter->getItem();
79 }
80
81 Iterator& operator++() {
82 m_iter++;
83 skipDeleted();
84 return *this;
85 }
86
87 friend bool operator==(const Iterator& a, const Iterator& b) {
88 return a.m_iter == b.m_iter;
89 }
90
91 friend bool operator!=(const Iterator& a, const Iterator& b) {
92 return a.m_iter != b.m_iter;
93 }
94
95 private:
96 void skipDeleted() {
97 while(m_iter != m_end && m_iter->isDeleted()) {
98 m_iter++;
99 }
100 }
101
102 typename NodeList::const_iterator m_iter;
103 typename NodeList::const_iterator m_end;
104 };
105
106 class Items {
107 public:
108 explicit Items(TemplateSTRtreeImpl& tree) : m_tree(tree) {}
109
110 Iterator begin() {
111 return Iterator(m_tree.nodes.cbegin(),
112 std::next(m_tree.nodes.cbegin(), static_cast<long>(m_tree.numItems)));
113 }
114
115 Iterator end() {
116 return Iterator(std::next(m_tree.nodes.cbegin(), static_cast<long>(m_tree.numItems)),
117 std::next(m_tree.nodes.cbegin(), static_cast<long>(m_tree.numItems)));
118 }
119 private:
120 TemplateSTRtreeImpl& m_tree;
121 };
122
125
130 explicit TemplateSTRtreeImpl(size_t p_nodeCapacity = 10) :
131 root(nullptr),
132 nodeCapacity(p_nodeCapacity),
133 numItems(0)
134 {}
135
141 TemplateSTRtreeImpl(size_t p_nodeCapacity, size_t itemCapacity) :
142 root(nullptr),
143 nodeCapacity(p_nodeCapacity),
144 numItems(0) {
145 auto finalSize = treeSize(itemCapacity);
146 nodes.reserve(finalSize);
147 }
148
153 root(other.root),
154 nodeCapacity(other.nodeCapacity),
155 numItems(other.numItems) {
156 nodes = other.nodes;
157 }
158
160 {
161 root = other.root;
162 nodeCapacity = other.nodeCapacity;
163 numItems = other.numItems;
164 nodes = other.nodes;
165 return *this;
166 }
167
171
173 void insert(ItemType&& item) {
174 insert(BoundsTraits::fromItem(item), std::forward<ItemType>(item));
175 }
176
178 void insert(const ItemType& item) {
179 insert(BoundsTraits::fromItem(item), item);
180 }
181
183 void insert(const BoundsType& itemEnv, ItemType&& item) {
184 if (!BoundsTraits::isNull(itemEnv)) {
185 createLeafNode(std::forward<ItemType>(item), itemEnv);
186 }
187 }
188
190 void insert(const BoundsType& itemEnv, const ItemType& item) {
191 if (!BoundsTraits::isNull(itemEnv)) {
192 createLeafNode(item, itemEnv);
193 }
194 }
195
199
201 template<typename ItemDistance>
202 std::pair<ItemType, ItemType> nearestNeighbour(ItemDistance& distance) {
203 return nearestNeighbour(*this, distance);
204 }
205
207 template<typename ItemDistance>
208 std::pair<ItemType, ItemType> nearestNeighbour() {
209 ItemDistance id;
210 return nearestNeighbour(*this);
211 }
212
214 template<typename ItemDistance>
216 ItemDistance & distance) {
217 if (!getRoot() || !other.getRoot()) {
218 return { nullptr, nullptr };
219 }
220
221 TemplateSTRtreeDistance<ItemType, BoundsTraits, ItemDistance> td(distance);
222 return td.nearestNeighbour(*root, *other.root);
223 }
224
226 template<typename ItemDistance>
227 std::pair<ItemType, ItemType> nearestNeighbour(TemplateSTRtreeImpl<ItemType, BoundsTraits>& other) {
228 ItemDistance id;
229 return nearestNeighbour(other, id);
230 }
231
232 template<typename ItemDistance>
233 ItemType nearestNeighbour(const BoundsType& env, const ItemType& item, ItemDistance& itemDist) {
234 build();
235
236 if (getRoot() == nullptr) {
237 return nullptr;
238 }
239
240 TemplateSTRNode<ItemType, BoundsTraits> bnd(item, env);
241 TemplateSTRNodePair<ItemType, BoundsTraits, ItemDistance> pair(*getRoot(), bnd, itemDist);
242
243 TemplateSTRtreeDistance<ItemType, BoundsTraits, ItemDistance> td(itemDist);
244 return td.nearestNeighbour(pair).first;
245 }
246
247 template<typename ItemDistance>
248 ItemType nearestNeighbour(const BoundsType& env, const ItemType& item) {
249 ItemDistance id;
250 return nearestNeighbour(env, item, id);
251 }
252
256
257 // Query the tree using the specified visitor. The visitor must be callable
258 // either with a single argument of `const ItemType&` or with the
259 // arguments `(const BoundsType&, const ItemType&).
260 // The visitor need not return a value, but if it does return a value,
261 // false values will be taken as a signal to stop the query.
262 template<typename Visitor>
263 void query(const BoundsType& queryEnv, Visitor &&visitor) {
264 if (!built()) {
265 build();
266 }
267
268 if (root && root->boundsIntersect(queryEnv)) {
269 if (root->isLeaf()) {
270 visitLeaf(visitor, *root);
271 } else {
272 query(queryEnv, *root, visitor);
273 }
274 }
275 }
276
277 // Query the tree and collect items in the provided vector.
278 void query(const BoundsType& queryEnv, std::vector<ItemType>& results) {
279 query(queryEnv, [&results](const ItemType& x) {
280 results.push_back(x);
281 });
282 }
283
287 Items items() {
288 build();
289 return Items(*this);
290 }
291
296 template<typename F>
297 void iterate(F&& func) {
298 auto n = built() ? numItems : nodes.size();
299 for (size_t i = 0; i < n; i++) {
300 func(nodes[i].getItem());
301 }
302 }
303
307
308 bool remove(const BoundsType& itemEnv, const ItemType& item) {
309 build();
310
311 if (root == nullptr) {
312 return false;
313 }
314
315 if (root->isLeaf()) {
316 if (!root->isDeleted() && root->getItem() == item) {
317 root->removeItem();
318 return true;
319 }
320 return false;
321 }
322
323 return remove(itemEnv, *root, item);
324 }
325
329
331 bool built() const {
332 return root != nullptr;
333 }
334
336 const Node* getRoot() {
337 build();
338 return root;
339 }
340
342
344 void build() {
345 std::lock_guard<std::mutex> lock(lock_);
346
347 if (built()) {
348 return;
349 }
350
351 if (nodes.empty()) {
352 return;
353 }
354
355 numItems = nodes.size();
356
357 // compute final size of tree and set it aside in a single
358 // block of memory
359 auto finalSize = treeSize(numItems);
360 nodes.reserve(finalSize);
361
362 // begin and end define a range of nodes needing parents
363 auto begin = nodes.begin();
364 auto number = static_cast<size_t>(std::distance(begin, nodes.end()));
365
366 while (number > 1) {
367 createParentNodes(begin, number);
368 std::advance(begin, static_cast<long>(number)); // parents just added become children in the next round
369 number = static_cast<size_t>(std::distance(begin, nodes.end()));
370 }
371
372 assert(finalSize == nodes.size());
373
374 root = &nodes.back();
375 }
376
377protected:
378 std::mutex lock_;
379 NodeList nodes; //**< a list of all leaf and branch nodes in the tree. */
380 Node* root; //**< a pointer to the root node, if the tree has been built. */
381 size_t nodeCapacity; //*< maximum number of children of each node */
382 size_t numItems; //*< total number of items in the tree, if it has been built. */
383
384 // Prevent instantiation of base class.
385 // ~TemplateSTRtreeImpl() = default;
386
387 void createLeafNode(ItemType&& item, const BoundsType& env) {
388 nodes.emplace_back(std::forward<ItemType>(item), env);
389 }
390
391 void createLeafNode(const ItemType& item, const BoundsType& env) {
392 nodes.emplace_back(item, env);
393 }
394
395 void createBranchNode(const Node *begin, const Node *end) {
396 assert(nodes.size() < nodes.capacity());
397 nodes.emplace_back(begin, end);
398 }
399
400 // calculate what the tree size will be when it is build. This is simply
401 // a version of createParentNodes that doesn't actually create anything.
402 size_t treeSize(size_t numLeafNodes) {
403 size_t nodesInTree = numLeafNodes;
404
405 size_t nodesWithoutParents = numLeafNodes;
406 while (nodesWithoutParents > 1) {
407 auto numSlices = sliceCount(nodesWithoutParents);
408 auto nodesPerSlice = sliceCapacity(nodesWithoutParents, numSlices);
409
410 size_t parentNodesAdded = 0;
411 for (size_t j = 0; j < numSlices; j++) {
412 auto nodesInSlice = std::min(nodesWithoutParents, nodesPerSlice);
413 nodesWithoutParents -= nodesInSlice;
414
415 parentNodesAdded += static_cast<size_t>(std::ceil(
416 static_cast<double>(nodesInSlice) / static_cast<double>(nodeCapacity)));
417 }
418
419 nodesInTree += parentNodesAdded;
420 nodesWithoutParents = parentNodesAdded;
421 }
422
423 return nodesInTree;
424 }
425
426 void createParentNodes(const NodeListIterator& begin, size_t number) {
427 // Arrange child nodes in two dimensions.
428 // First, divide them into vertical slices of a given size (left-to-right)
429 // Then create nodes within those slices (bottom-to-top)
430 auto numSlices = sliceCount(number);
431 std::size_t nodesPerSlice = sliceCapacity(number, numSlices);
432
433 // We could sort all of the nodes here, but we don't actually need them to be
434 // completely sorted. They need to be sorted enough for each node to end up
435 // in the right vertical slice, but their relative position within the slice
436 // doesn't matter. So we do a partial sort for each slice below instead.
437 auto end = begin + static_cast<long>(number);
438 sortNodesX(begin, end);
439
440 auto startOfSlice = begin;
441 for (decltype(numSlices) j = 0; j < numSlices; j++) {
442 // end iterator is being invalidated at each iteration
443 end = begin + static_cast<long>(number);
444 auto nodesRemaining = static_cast<size_t>(std::distance(startOfSlice, end));
445 auto nodesInSlice = std::min(nodesRemaining, nodesPerSlice);
446 auto endOfSlice = std::next(startOfSlice, static_cast<long>(nodesInSlice));
447
448 // Make sure that every node that should be in this slice ends up somewhere
449 // between startOfSlice and endOfSlice. We don't require any ordering among
450 // nodes between startOfSlice and endOfSlice.
451 //partialSortNodes(startOfSlice, endOfSlice, end);
452
453 addParentNodesFromVerticalSlice(startOfSlice, endOfSlice);
454
455 startOfSlice = endOfSlice;
456 }
457 }
458
459 void addParentNodesFromVerticalSlice(const NodeListIterator& begin, const NodeListIterator& end) {
460 if (BoundsTraits::TwoDimensional::value) {
461 sortNodesY(begin, end);
462 }
463
464 // Arrange the nodes vertically and full up parent nodes sequentially until they're full.
465 // A possible improvement would be to rework this such so that if we have 81 nodes we
466 // put 9 into each parent instead of 10 or 1.
467 auto firstChild = begin;
468 while (firstChild != end) {
469 auto childrenRemaining = static_cast<size_t>(std::distance(firstChild, end));
470 auto childrenForNode = std::min(nodeCapacity, childrenRemaining);
471 auto lastChild = std::next(firstChild, static_cast<long>(childrenForNode));
472
473 //partialSortNodes(firstChild, lastChild, end);
474
475 // Ideally we would be able to store firstChild and lastChild instead of
476 // having to convert them to pointers, but I wasn't sure how to access
477 // the NodeListIterator type from within Node without creating some weird
478 // circular dependency.
479 const Node *ptr_first = &*firstChild;
480 const Node *ptr_end = ptr_first + childrenForNode;
481
482 createBranchNode(ptr_first, ptr_end);
483 firstChild = lastChild;
484 }
485 }
486
487 void sortNodesX(const NodeListIterator& begin, const NodeListIterator& end) {
488 std::sort(begin, end, [](const Node &a, const Node &b) {
489 return BoundsTraits::getX(a.getBounds()) < BoundsTraits::getX(b.getBounds());
490 });
491 }
492
493 void sortNodesY(const NodeListIterator& begin, const NodeListIterator& end) {
494 std::sort(begin, end, [](const Node &a, const Node &b) {
495 return BoundsTraits::getY(a.getBounds()) < BoundsTraits::getY(b.getBounds());
496 });
497 }
498
499 // Helper function to visit an item using a visitor that has no return value.
500 // In this case, we will always return true, indicating that querying should
501 // continue.
502 template<typename Visitor,
503 typename std::enable_if<std::is_void<decltype(std::declval<Visitor>()(std::declval<ItemType>()))>::value, std::nullptr_t>::type = nullptr >
504 bool visitLeaf(Visitor&& visitor, const Node& node)
505 {
506 visitor(node.getItem());
507 return true;
508 }
509
510 // MSVC 2015 does not implement C++11 expression SFINAE and considers this a
511 // redefinition of a previous method
512#if !defined(_MSC_VER) || _MSC_VER >= 1910
513 template<typename Visitor,
514 typename std::enable_if<std::is_void<decltype(std::declval<Visitor>()(std::declval<BoundsType>(), std::declval<ItemType>()))>::value, std::nullptr_t>::type = nullptr >
515 bool visitLeaf(Visitor&& visitor, const Node& node)
516 {
517 visitor(node.getBounds(), node.getItem());
518 return true;
519 }
520#endif
521
522 // If the visitor function does return a value, we will use this to indicate
523 // that querying should continue.
524 template<typename Visitor,
525 typename std::enable_if<!std::is_void<decltype(std::declval<Visitor>()(std::declval<ItemType>()))>::value, std::nullptr_t>::type = nullptr>
526 bool visitLeaf(Visitor&& visitor, const Node& node)
527 {
528 return visitor(node.getItem());
529 }
530
531 // MSVC 2015 does not implement C++11 expression SFINAE and considers this a
532 // redefinition of a previous method
533#if !defined(_MSC_VER) || _MSC_VER >= 1910
534 template<typename Visitor,
535 typename std::enable_if<!std::is_void<decltype(std::declval<Visitor>()(std::declval<BoundsType>(), std::declval<ItemType>()))>::value, std::nullptr_t>::type = nullptr>
536 bool visitLeaf(Visitor&& visitor, const Node& node)
537 {
538 return visitor(node.getBounds(), node.getItem());
539 }
540#endif
541
542 template<typename Visitor>
543 bool query(const BoundsType& queryEnv,
544 const Node& node,
545 Visitor&& visitor) {
546
547 assert(!node.isLeaf());
548
549 for (auto *child = node.beginChildren(); child < node.endChildren(); ++child) {
550 if (child->boundsIntersect(queryEnv)) {
551 if (child->isLeaf()) {
552 if (!child->isDeleted()) {
553 if (!visitLeaf(visitor, *child)) {
554 return false; // abort query
555 }
556 }
557 } else {
558 if (!query(queryEnv, *child, visitor)) {
559 return false; // abort query
560 }
561 }
562 }
563 }
564 return true; // continue searching
565 }
566
567 bool remove(const BoundsType& queryEnv,
568 const Node& node,
569 const ItemType& item) {
570
571 assert(!node.isLeaf());
572
573 for (auto *child = node.beginChildren(); child < node.endChildren(); ++child) {
574 if (child->boundsIntersect(queryEnv)) {
575 if (child->isLeaf()) {
576 if (!child->isDeleted() && child->getItem() == item) {
577 // const cast is ugly, but alternative seems to be to remove all
578 // const qualifiers in Node and open up mutability everywhere?
579 auto mutableChild = const_cast<Node*>(child);
580 mutableChild->removeItem();
581 return true;
582 }
583 } else {
584 bool removed = remove(queryEnv, *child, item);
585 if (removed) {
586 return true;
587 }
588 }
589 }
590 }
591
592 return false;
593 }
594
595 size_t sliceCount(size_t numNodes) const {
596 double minLeafCount = std::ceil(static_cast<double>(numNodes) / static_cast<double>(nodeCapacity));
597
598 return static_cast<size_t>(std::ceil(std::sqrt(minLeafCount)));
599 }
600
601 static size_t sliceCapacity(size_t numNodes, size_t numSlices) {
602 return static_cast<size_t>(std::ceil(static_cast<double>(numNodes) / static_cast<double>(numSlices)));
603 }
604};
605
606struct EnvelopeTraits {
607 using BoundsType = geom::Envelope;
608 using TwoDimensional = std::true_type;
609
610 static bool intersects(const BoundsType& a, const BoundsType& b) {
611 return a.intersects(b);
612 }
613
614 static double size(const BoundsType& a) {
615 return a.getArea();
616 }
617
618 static double distance(const BoundsType& a, const BoundsType& b) {
619 return a.distance(b);
620 }
621
622 static BoundsType empty() {
623 return {};
624 }
625
626 template<typename ItemType>
627 static const BoundsType& fromItem(const ItemType& i) {
628 return *(i->getEnvelopeInternal());
629 }
630
631 template<typename ItemType>
632 static const BoundsType& fromItem(ItemType&& i) {
633 return *(i->getEnvelopeInternal());
634 }
635
636 static double getX(const BoundsType& a) {
637 return a.getMinX() + a.getMaxX();
638 }
639
640 static double getY(const BoundsType& a) {
641 return a.getMinY() + a.getMaxY();
642 }
643
644 static void expandToInclude(BoundsType& a, const BoundsType& b) {
645 a.expandToInclude(b);
646 }
647
648 static bool isNull(const BoundsType& a) {
649 return a.isNull();
650 }
651};
652
653struct IntervalTraits {
654 using BoundsType = Interval;
655 using TwoDimensional = std::false_type;
656
657 static bool intersects(const BoundsType& a, const BoundsType& b) {
658 return a.intersects(&b);
659 }
660
661 static double size(const BoundsType& a) {
662 return a.getWidth();
663 }
664
665 static double getX(const BoundsType& a) {
666 return a.getMin() + a.getMax();
667 }
668
669 static double getY(const BoundsType& a) {
670 return a.getMin() + a.getMax();
671 }
672
673 static void expandToInclude(BoundsType& a, const BoundsType& b) {
674 a.expandToInclude(&b);
675 }
676
677 static bool isNull(const BoundsType& a) {
678 (void) a;
679 return false;
680 }
681};
682
683
684template<typename ItemType, typename BoundsTraits = EnvelopeTraits>
685class TemplateSTRtree : public TemplateSTRtreeImpl<ItemType, BoundsTraits> {
686public:
687 using TemplateSTRtreeImpl<ItemType, BoundsTraits>::TemplateSTRtreeImpl;
688};
689
690// When ItemType is a pointer and our bounds are geom::Envelope, adopt
691// the SpatialIndex interface which requires queries via an envelope
692// and items to be representable as void*.
693template<typename ItemType>
694class TemplateSTRtree<ItemType*, EnvelopeTraits> : public TemplateSTRtreeImpl<ItemType*, EnvelopeTraits>, public SpatialIndex {
695public:
696 using TemplateSTRtreeImpl<ItemType*, EnvelopeTraits>::TemplateSTRtreeImpl;
697 using TemplateSTRtreeImpl<ItemType*, EnvelopeTraits>::insert;
698 using TemplateSTRtreeImpl<ItemType*, EnvelopeTraits>::query;
699 using TemplateSTRtreeImpl<ItemType*, EnvelopeTraits>::remove;
700
701 // The SpatialIndex methods only work when we are storing a pointer type.
702 void query(const geom::Envelope* queryEnv, std::vector<void*>& results) override {
703 query(*queryEnv, [&results](const ItemType* x) {
704 results.push_back(const_cast<void*>(static_cast<const void*>(x)));
705 });
706 }
707
708 void query(const geom::Envelope* queryEnv, ItemVisitor& visitor) override {
709 query(*queryEnv, [&visitor](const ItemType* x) {
710 visitor.visitItem(const_cast<void*>(static_cast<const void*>(x)));
711 });
712 }
713
714 bool remove(const geom::Envelope* itemEnv, void* item) override {
715 return remove(*itemEnv, static_cast<ItemType*>(item));
716 }
717
718 void insert(const geom::Envelope* itemEnv, void* item) override {
719 insert(*itemEnv, std::move(static_cast<ItemType*>(item)));
720 }
721};
722
723
724}
725}
726}
A function method which computes the distance between two ItemBoundables in an STRtree....
Definition: ItemDistance.h:33
A query-only R-tree created using the Sort-Tile-Recursive (STR) algorithm. For one- or two-dimensiona...
Definition: TemplateSTRtree.h:57
void build()
Definition: TemplateSTRtree.h:344
std::pair< ItemType, ItemType > nearestNeighbour(TemplateSTRtreeImpl< ItemType, BoundsTraits > &other)
Definition: TemplateSTRtree.h:227
std::pair< ItemType, ItemType > nearestNeighbour()
Definition: TemplateSTRtree.h:208
std::pair< ItemType, ItemType > nearestNeighbour(TemplateSTRtreeImpl< ItemType, BoundsTraits > &other, ItemDistance &distance)
Definition: TemplateSTRtree.h:215
std::pair< ItemType, ItemType > nearestNeighbour(ItemDistance &distance)
Definition: TemplateSTRtree.h:202
TemplateSTRtreeImpl(size_t p_nodeCapacity=10)
Definition: TemplateSTRtree.h:130
TemplateSTRtreeImpl(size_t p_nodeCapacity, size_t itemCapacity)
Definition: TemplateSTRtree.h:141
TemplateSTRtreeImpl(const TemplateSTRtreeImpl &other)
Definition: TemplateSTRtree.h:152
void insert(const BoundsType &itemEnv, const ItemType &item)
Definition: TemplateSTRtree.h:190
void insert(const ItemType &item)
Definition: TemplateSTRtree.h:178
void insert(ItemType &&item)
Definition: TemplateSTRtree.h:173
void insert(const BoundsType &itemEnv, ItemType &&item)
Definition: TemplateSTRtree.h:183
bool built() const
Definition: TemplateSTRtree.h:331
const Node * getRoot()
Definition: TemplateSTRtree.h:336
void iterate(F &&func)
Definition: TemplateSTRtree.h:297
Items items()
Definition: TemplateSTRtree.h:287
Basic namespace for all GEOS functionalities.
Definition: geos.h:39