12.4 Calculations
Basic arithmetic operations:
- Function: void gcry_mpi_add (gcry_mpi_t w, gcry_mpi_t u, gcry_mpi_t v) ¶
-
w = u + v.
- Function: void gcry_mpi_add_ui (gcry_mpi_t w, gcry_mpi_t u, unsigned long v) ¶
-
w = u + v. Note that v is an unsigned integer.
- Function: void gcry_mpi_addm (gcry_mpi_t w, gcry_mpi_t u, gcry_mpi_t v, gcry_mpi_t m) ¶
-
w = u + v \bmod m.
- Function: void gcry_mpi_sub (gcry_mpi_t w, gcry_mpi_t u, gcry_mpi_t v) ¶
-
w = u - v.
- Function: void gcry_mpi_sub_ui (gcry_mpi_t w, gcry_mpi_t u, unsigned long v) ¶
-
w = u - v. v is an unsigned integer.
- Function: void gcry_mpi_subm (gcry_mpi_t w, gcry_mpi_t u, gcry_mpi_t v, gcry_mpi_t m) ¶
-
w = u - v \bmod m.
- Function: void gcry_mpi_mul (gcry_mpi_t w, gcry_mpi_t u, gcry_mpi_t v) ¶
-
w = u * v.
- Function: void gcry_mpi_mul_ui (gcry_mpi_t w, gcry_mpi_t u, unsigned long v) ¶
-
w = u * v. v is an unsigned integer.
- Function: void gcry_mpi_mulm (gcry_mpi_t w, gcry_mpi_t u, gcry_mpi_t v, gcry_mpi_t m) ¶
-
w = u * v \bmod m.
- Function: void gcry_mpi_mul_2exp (gcry_mpi_t w, gcry_mpi_t u, unsigned long e) ¶
-
w = u * 2^e.
- Function: void gcry_mpi_div (gcry_mpi_t q, gcry_mpi_t r, gcry_mpi_t dividend, gcry_mpi_t divisor, int round) ¶
-
q = dividend / divisor, r =
dividend \bmod divisor. q and r may be passed
as NULL
. round is either negative for floored division
(rounds towards the next lower integer) or zero for truncated division
(rounds towards zero).
- Function: void gcry_mpi_mod (gcry_mpi_t r, gcry_mpi_t dividend, gcry_mpi_t divisor) ¶
-
r = dividend \bmod divisor.
- Function: void gcry_mpi_powm (gcry_mpi_t w, const gcry_mpi_t b, const gcry_mpi_t e, const gcry_mpi_t m) ¶
-
w = b^e \bmod m.
- Function: int gcry_mpi_gcd (gcry_mpi_t g, gcry_mpi_t a, gcry_mpi_t b) ¶
-
Set g to the greatest common divisor of a and b.
Return true if g is 1.
- Function: int gcry_mpi_invm (gcry_mpi_t x, gcry_mpi_t a, gcry_mpi_t m) ¶
-
Set x to the multiplicative inverse of a \bmod m.
Return true if the inverse exists.