18 #ifndef COMMON_PARAMS_HELPER
19 #define COMMON_PARAMS_HELPER
Utility class for dealing with the contents of CommonParams.
void setIdeal(const CommonParams ¶ms, const BigIdeal &ideal)
TermTranslator & getTranslator()
bool _produceCanonicalOutput
void readIdeal(const CommonParams ¶ms, Scanner &in)
void addPurePowersAtInfinity()
auto_ptr< TermConsumer > makeTranslatedIdealConsumer(bool split=false)
const VarNames & getNames()
BigTermConsumer & getIdealConsumer()
void setIdealAndIdealOutput(const CommonParams ¶ms, const BigIdeal &input, BigTermConsumer &output)
Use given ideal and support ideal output.
CommonParamsHelper(const CommonParamsHelper &)
auto_ptr< TermTranslator > takeTranslator()
auto_ptr< CoefTermConsumer > makeToUnivariatePolyConsumer()
void readIdealAndSetOutput(const CommonParams ¶ms, const DataType &output)
Read input ideal and support specified kind of output.
void readIdealAndSetIdealOutput(const CommonParams ¶ms)
Read input and support ideal output.
void readIdealAndSetPolyOutput(const CommonParams ¶ms)
Read input and support polynomial output.
auto_ptr< BigTermConsumer > _idealConsumerDeleter
BigTermConsumer * _idealConsumer
CoefBigTermConsumer & getPolyConsumer()
const Ideal & getIdeal() const
auto_ptr< CoefBigTermConsumer > _polyConsumerDeleter
auto_ptr< Ideal > takeIdeal()
const TermTranslator & getTranslator() const
void setIdealAndPolyOutput(const CommonParams ¶ms, const BigIdeal &input, CoefBigTermConsumer &output)
Use given ideal and support polynomial output.
CoefBigTermConsumer * _polyConsumer
auto_ptr< TermTranslator > _translator
CommonParamsHelper & operator=(const CommonParamsHelper &)
auto_ptr< CoefTermConsumer > makeTranslatedPolyConsumer()
The intention of this class is to describe the different kinds of mathematical structures that Frobby...
Represents a monomial ideal with int exponents.
This class offers an input interface which is more convenient and for some purposes more efficient th...
TermTranslator handles translation between terms whose exponents are infinite precision integers and ...
Defines the variables of a polynomial ring and facilities IO involving them.