Frobby  0.9.5
CoefBigTermConsumer.h
Go to the documentation of this file.
1 /* Frobby: Software for monomial ideal computations.
2  Copyright (C) 2007 Bjarke Hammersholt Roune (www.broune.com)
3 
4  This program is free software; you can redistribute it and/or modify
5  it under the terms of the GNU General Public License as published by
6  the Free Software Foundation; either version 2 of the License, or
7  (at your option) any later version.
8 
9  This program is distributed in the hope that it will be useful,
10  but WITHOUT ANY WARRANTY; without even the implied warranty of
11  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12  GNU General Public License for more details.
13 
14  You should have received a copy of the GNU General Public License
15  along with this program. If not, see http://www.gnu.org/licenses/.
16 */
17 #ifndef COEF_BIG_TERM_CONSUMER_GUARD
18 #define COEF_BIG_TERM_CONSUMER_GUARD
19 
20 #include "CoefTermConsumer.h"
21 
22 #include <vector>
23 
24 class Term;
25 class TermTranslator;
26 class BigPolynomial;
27 class VarNames;
28 
30  public:
31  virtual void consumeRing(const VarNames& names) = 0;
32 
33  virtual void beginConsuming() = 0;
34  virtual void consume(const mpz_class& coef, const Term& term);
35  virtual void consume
36  (const mpz_class& coef,
37  const Term& term,
38  const TermTranslator& translator) = 0;
39  virtual void consume
40  (const mpz_class& coef, const vector<mpz_class>& term) = 0;
41  virtual void doneConsuming() = 0;
42 
43  virtual void consume(const BigPolynomial& poly);
44 };
45 
46 #endif
virtual void consume(const mpz_class &coef, const Term &term, const TermTranslator &translator)=0
virtual void beginConsuming()=0
virtual void consume(const mpz_class &coef, const vector< mpz_class > &term)=0
virtual void consume(const mpz_class &coef, const Term &term)
virtual void doneConsuming()=0
virtual void consumeRing(const VarNames &names)=0
TermTranslator handles translation between terms whose exponents are infinite precision integers and ...
Term represents a product of variables which does not include a coefficient.
Definition: Term.h:49
Defines the variables of a polynomial ring and facilities IO involving them.
Definition: VarNames.h:40