21 GFP2Element(
const byte *encodedElement,
unsigned int size)
22 : c1(encodedElement, size/2), c2(encodedElement+size/2, size/2) {}
24 void Encode(
byte *encodedElement,
unsigned int size)
26 c1.
Encode(encodedElement, size/2);
27 c2.
Encode(encodedElement+size/2, size/2);
54 throw InvalidArgument(
"GFP2_ONB: modulus must be equivalent to 2 mod 3");
57 const Integer& GetModulus()
const {
return modp.GetModulus();}
61 t = modp.Inverse(modp.ConvertIn(a));
66 {
return GFP2Element(modp.ConvertIn(a.c1), modp.ConvertIn(a.c2));}
69 {
return GFP2Element(modp.ConvertOut(a.c1), modp.ConvertOut(a.c2));}
73 return modp.Equal(a.c1, b.c1) && modp.Equal(a.c2, b.c2);
78 return GFP2Element::Zero();
83 result.c1 = modp.Add(a.c1, b.c1);
84 result.c2 = modp.Add(a.c2, b.c2);
90 result.c1 = modp.Inverse(a.c1);
91 result.c2 = modp.Inverse(a.c2);
97 result.c1 = modp.Double(a.c1);
98 result.c2 = modp.Double(a.c2);
104 result.c1 = modp.Subtract(a.c1, b.c1);
105 result.c2 = modp.Subtract(a.c2, b.c2);
111 modp.Accumulate(a.c1, b.c1);
112 modp.Accumulate(a.c2, b.c2);
118 modp.Reduce(a.c1, b.c1);
119 modp.Reduce(a.c2, b.c2);
125 return a.c1.NotZero() || a.c2.NotZero();
130 result.c1 = result.c2 = modp.Inverse(modp.MultiplicativeIdentity());
136 t = modp.Add(a.c1, a.c2);
137 t = modp.Multiply(t, modp.Add(b.c1, b.c2));
138 result.c1 = modp.Multiply(a.c1, b.c1);
139 result.c2 = modp.Multiply(a.c2, b.c2);
140 result.c1.
swap(result.c2);
141 modp.Reduce(t, result.c1);
142 modp.Reduce(t, result.c2);
143 modp.Reduce(result.c1, t);
144 modp.Reduce(result.c2, t);
155 const Integer &ac1 = (&a == &result) ? (t = a.c1) : a.c1;
156 result.c1 = modp.Multiply(modp.Subtract(modp.Subtract(a.c2, a.c1), a.c1), a.c2);
157 result.c2 = modp.Multiply(modp.Subtract(modp.Subtract(ac1, a.c2), a.c2), ac1);
169 const Element & PthPower(
const Element &a)
const
172 result.c1.
swap(result.c2);
176 void RaiseToPthPower(Element &a)
const
182 const Element & SpecialOperation1(
const Element &a)
const
186 modp.Reduce(result.c1, a.c2);
187 modp.Reduce(result.c1, a.c2);
188 modp.Reduce(result.c2, a.c1);
189 modp.Reduce(result.c2, a.c1);
194 const Element & SpecialOperation2(
const Element &x,
const Element &y,
const Element &z)
const
197 t = modp.Add(x.c2, y.c2);
198 result.c1 = modp.Multiply(z.c1, modp.Subtract(y.c1, t));
199 modp.Accumulate(result.c1, modp.Multiply(z.c2, modp.Subtract(t, x.c1)));
200 t = modp.Add(x.c1, y.c1);
201 result.c2 = modp.Multiply(z.c2, modp.Subtract(y.c2, t));
202 modp.Accumulate(result.c2, modp.Multiply(z.c1, modp.Subtract(t, x.c2)));
Classes for performing mathematics over different fields.
bool operator==(const OID &lhs, const OID &rhs)
Compare two OIDs for equality.
bool operator!=(const OID &lhs, const OID &rhs)
Compare two OIDs for inequality.
virtual Element CascadeExponentiate(const Element &x, const Integer &e1, const Element &y, const Integer &e2) const
TODO.
GF(p^2), optimal normal basis.
const Element & Double(const Element &a) const
Doubles an element in the group.
const Element & Add(const Element &a, const Element &b) const
Adds elements in the group.
const Element & MultiplicativeIdentity() const
Retrieves the multiplicative identity.
Element & Accumulate(Element &a, const Element &b) const
TODO.
Element & Reduce(Element &a, const Element &b) const
Reduces an element in the congruence class.
const Element & MultiplicativeInverse(const Element &a) const
Calculate the multiplicative inverse of an element in the group.
const Element & Subtract(const Element &a, const Element &b) const
Subtracts elements in the group.
const Element & Multiply(const Element &a, const Element &b) const
Multiplies elements in the group.
bool Equal(const GFP2Element &a, const GFP2Element &b) const
Compare two elements for equality.
bool IsUnit(const Element &a) const
Determines whether an element is a unit in the group.
const Element & Inverse(const Element &a) const
Inverts the element in the group.
Element Exponentiate(const Element &a, const Integer &e) const
Raises a base to an exponent in the group.
const Element & Square(const Element &a) const
Square an element in the group.
const Element & Identity() const
Provides the Identity element.
Multiple precision integer with arithmetic operations.
static void Divide(Integer &r, Integer &q, const Integer &a, const Integer &d)
Extended Division.
void swap(Integer &a)
Swaps this Integer with another Integer.
void Encode(byte *output, size_t outputLen, Signedness sign=UNSIGNED) const
Encode in big-endian format.
An invalid argument was detected.
Interface for random number generators.
Abstract base classes that provide a uniform interface to this library.
Multiple precision integer with arithmetic operations.
Class file for performing modular arithmetic.
Crypto++ library namespace.
void swap(::SecBlock< T, A > &a, ::SecBlock< T, A > &b)
Swap two SecBlocks.
#define CRYPTOPP_ASSERT(exp)
Debugging and diagnostic assertion.
void XTR_FindPrimesAndGenerator(RandomNumberGenerator &rng, Integer &p, Integer &q, GFP2Element &g, unsigned int pbits, unsigned int qbits)
Creates primes p,q and generator g for XTR.