14#if defined(CRYPTOPP_DEBUG) && !defined(CRYPTOPP_DOXYGEN_PROCESSING) && !defined(CRYPTOPP_IS_DLL)
18void RSA_TestInstantiations()
45#ifndef CRYPTOPP_IMPORTS
51 return ASN1::rsaEncryption();
73 return a_exp_b_mod_c(x, m_e, m_n);
78 CRYPTOPP_UNUSED(rng), CRYPTOPP_UNUSED(level);
90 return GetValueHelper(
this, name, valueType, pValue).Assignable()
91 CRYPTOPP_GET_FUNCTION_ENTRY(
Modulus)
98 AssignFromHelper(
this, source)
99 CRYPTOPP_SET_FUNCTION_ENTRY(
Modulus)
109 RSAPrimeSelector(
const Integer &e) : m_e(e) {}
116 int modulusSize = 2048;
120 if (modulusSize < 16)
121 throw InvalidArgument(
"InvertibleRSAFunction: specified modulus size is too small");
126 if (m_e < 3 || m_e.IsEven())
127 throw InvalidArgument(
"InvertibleRSAFunction: invalid public exponent");
133 RSAPrimeSelector selector(m_e);
142 m_dp = m_d % (m_p-1);
143 m_dq = m_d % (m_q-1);
152 SignaturePairwiseConsistencyTest_FIPS_140_Only(signer, verifier);
156 EncryptionPairwiseConsistencyTest_FIPS_140_Only(encryptor, decryptor);
168 throw InvalidArgument(
"InvertibleRSAFunction: input is not a valid RSA private key");
185 Integer a = modn.Exponentiate(i, r);
197 m_dp = m_d % (m_p-1);
198 m_dq = m_d % (m_q-1);
203 throw InvalidArgument(
"InvertibleRSAFunction: input is not a valid RSA private key");
213 BERDecodeUnsigned<word32>(privateKey, version,
INTEGER, 0, 0);
214 m_n.BERDecode(privateKey);
215 m_e.BERDecode(privateKey);
218 m_q.BERDecode(privateKey);
222 privateKey.MessageEnd();
228 DEREncodeUnsigned<word32>(privateKey, 0);
229 m_n.DEREncode(privateKey);
230 m_e.DEREncode(privateKey);
233 m_q.DEREncode(privateKey);
237 privateKey.MessageEnd();
249 Integer re = modn.Exponentiate(r, m_e);
250 re = modn.Multiply(re, x);
254 y = modn.Multiply(y, rInv);
255 if (modn.Exponentiate(y, m_e) != x)
278 pass = pass && m_p * m_q == m_n;
280 pass = pass && m_e*m_d %
LCM(m_p-1, m_q-1) == 1;
282 pass = pass && m_dp == m_d%(m_p-1) && m_dq == m_d%(m_q-1);
284 pass = pass && m_u * m_q % m_p == 1;
297 return GetValueHelper<RSAFunction>(
this, name, valueType, pValue).Assignable()
298 CRYPTOPP_GET_FUNCTION_ENTRY(
Prime1)
299 CRYPTOPP_GET_FUNCTION_ENTRY(
Prime2)
309 AssignFromHelper<RSAFunction>(
this, source)
310 CRYPTOPP_SET_FUNCTION_ENTRY(
Prime1)
311 CRYPTOPP_SET_FUNCTION_ENTRY(
Prime2)
324 return t % 16 == 12 ? t : m_n - t;
Classes for working with NameValuePairs.
AlgorithmParameters MakeParameters(const char *name, const T &value, bool throwIfNotUsed=true)
Create an object that implements NameValuePairs.
Classes and functions for working with ANS.1 objects.
An object that implements NameValuePairs.
void DoQuickSanityCheck() const
Perform a quick sanity check.
Base class for all exceptions thrown by the library.
@ OTHER_ERROR
Some other error occurred not belonging to other categories.
Multiple precision integer with arithmetic operations.
void DEREncode(BufferedTransformation &bt) const
Encode in DER format.
void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs ¶ms=g_nullNameValuePairs)
Generate a random number.
bool IsPositive() const
Determines if the Integer is positive.
void Randomize(RandomNumberGenerator &rng, size_t bitCount)
Set this Integer to random integer.
void BERDecode(const byte *input, size_t inputLen)
Decode from BER format.
bool IsZero() const
Determines if the Integer is 0.
Integer MultiplicativeInverse() const
Calculate multiplicative inverse.
bool IsOdd() const
Determines if the Integer is odd parity.
Integer InverseMod(const Integer &n) const
Calculate multiplicative inverse.
static const Integer & One()
Integer representing 1.
bool IsEven() const
Determines if the Integer is even parity.
An invalid argument was detected.
Integer CalculateInverse(RandomNumberGenerator &rng, const Integer &x) const
Calculates the inverse of an element.
bool Validate(RandomNumberGenerator &rng, unsigned int level) const
Check this object for errors.
void Initialize(RandomNumberGenerator &rng, unsigned int modulusBits, const Integer &e=17)
Create a RSA private key.
void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg)
Generate a random key or crypto parameters.
void AssignFrom(const NameValuePairs &source)
Assign values to this object.
void DEREncodePrivateKey(BufferedTransformation &bt) const
Encode privateKey part of privateKeyInfo.
bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
Get a named value.
Integer CalculateInverse(RandomNumberGenerator &rng, const Integer &x) const
Calculates the inverse of an element.
void BERDecodePrivateKey(BufferedTransformation &bt, bool parametersPresent, size_t size)
Decode privateKey part of privateKeyInfo.
Ring of congruence classes modulo n.
Interface for retrieving values given their names.
T GetValueWithDefault(const char *name, T defaultValue) const
Get a named value.
CRYPTOPP_DLL bool GetIntValue(const char *name, int &value) const
Get a named value with type int.
Template implementing constructors for public key algorithm classes.
Application callback to signal suitability of a cabdidate prime.
Integer ApplyFunction(const Integer &x) const
Applies the trapdoor.
bool Validate(RandomNumberGenerator &rng, unsigned int level) const
Check this object for errors.
OID GetAlgorithmID() const
Retrieves the OID of the algorithm.
Integer ApplyFunction(const Integer &x) const
Applies the trapdoor.
void BERDecodePublicKey(BufferedTransformation &bt, bool parametersPresent, size_t size)
Decode subjectPublicKey part of subjectPublicKeyInfo.
bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
Get a named value.
void DEREncodePublicKey(BufferedTransformation &bt) const
Encode subjectPublicKey part of subjectPublicKeyInfo.
void AssignFrom(const NameValuePairs &source)
Assign values to this object.
Interface for random number generators.
unsigned int word32
32-bit unsigned datatype
CRYPTOPP_DLL RandomNumberGenerator & NullRNG()
Random Number Generator that does not produce random numbers.
Classes and functions for the FIPS 140-2 validated library.
CRYPTOPP_DLL bool FIPS_140_2_ComplianceEnabled()
Determines whether the library provides FIPS validated cryptography.
const T & STDMIN(const T &a, const T &b)
Replacement function for std::min.
Class file for performing modular arithmetic.
Crypto++ library namespace.
const char * PointerToPrimeSelector()
const PrimeSelector *
const char * MultiplicativeInverseOfPrime2ModPrime1()
Integer.
const char * Prime2()
Integer.
const char * Modulus()
Integer.
const char * KeySize()
int, in bits
const char * ModPrime2PrivateExponent()
Integer.
const char * PublicExponent()
Integer.
const char * ModulusSize()
int, in bits
const char * Prime1()
Integer.
const char * ModPrime1PrivateExponent()
Integer.
const char * PrivateExponent()
Integer.
Classes and functions for number theoretic operations.
bool RelativelyPrime(const Integer &a, const Integer &b)
Determine relative primality.
CRYPTOPP_DLL bool VerifyPrime(RandomNumberGenerator &rng, const Integer &p, unsigned int level=1)
Verifies a number is probably prime.
CRYPTOPP_DLL Integer ModularRoot(const Integer &a, const Integer &dp, const Integer &dq, const Integer &p, const Integer &q, const Integer &u)
Extract a modular root.
Integer GCD(const Integer &a, const Integer &b)
Calculate the greatest common divisor.
Integer LCM(const Integer &a, const Integer &b)
Calculate the least common multiple.
ASN.1 object identifiers for algorithms and schemes.
Classes for PKCS padding schemes.
Classes for probabilistic signature schemes.
Classes for the RSA cryptosystem.
Classes for SHA3 message digests.
Classes for SHA-1 and SHA-2 family of message digests.
RSA encryption algorithm.
#define CRYPTOPP_ASSERT(exp)
Debugging and diagnostic assertion.