Crypto++ 8.7
Free C++ class library of cryptographic schemes
rijndael_simd.cpp
1// rijndael_simd.cpp - written and placed in the public domain by
2// Jeffrey Walton, Uri Blumenthal and Marcel Raad.
3// AES-NI code originally written by Wei Dai.
4//
5// This source file uses intrinsics and built-ins to gain access to
6// AES-NI, ARMv8a AES and Power8 AES instructions. A separate source
7// file is needed because additional CXXFLAGS are required to enable
8// the appropriate instructions sets in some build configurations.
9//
10// ARMv8a AES code based on CriticalBlue code from Johannes Schneiders,
11// Skip Hovsmith and Barry O'Rourke for the mbedTLS project. Stepping
12// mbedTLS under a debugger was helped for us to determine problems
13// with our subkey generation and scheduling.
14//
15// AltiVec and Power8 code based on http://github.com/noloader/AES-Intrinsics and
16// http://www.ibm.com/developerworks/library/se-power8-in-core-cryptography/
17// For Power8 do not remove the casts, even when const-ness is cast away. It causes
18// failed compiles and a 0.3 to 0.6 cpb drop in performance. The IBM documentation
19// absolutely sucks. Thanks to Andy Polyakov, Paul R and Trudeaun for answering
20// questions and filling the gaps in the IBM documentation.
21//
22
23#include "pch.h"
24#include "config.h"
25#include "misc.h"
26
27#if (CRYPTOPP_AESNI_AVAILABLE)
28# include "adv_simd.h"
29# include <emmintrin.h>
30# include <smmintrin.h>
31# include <wmmintrin.h>
32#endif
33
34// Android makes <arm_acle.h> available with ARMv7-a
35#if (CRYPTOPP_BOOL_ARMV8)
36# include "adv_simd.h"
37# if (CRYPTOPP_ARM_NEON_HEADER)
38# include <arm_neon.h>
39# endif
40# if (CRYPTOPP_ARM_ACLE_HEADER)
41# include <stdint.h>
42# include <arm_acle.h>
43# endif
44#endif
45
46#if defined(_M_ARM64)
47# include "adv_simd.h"
48#endif
49
50#if defined(CRYPTOPP_POWER8_AES_AVAILABLE)
51# include "adv_simd.h"
52# include "ppc_simd.h"
53#endif
54
55#ifdef CRYPTOPP_GNU_STYLE_INLINE_ASSEMBLY
56# include <signal.h>
57# include <setjmp.h>
58#endif
59
60#ifndef EXCEPTION_EXECUTE_HANDLER
61# define EXCEPTION_EXECUTE_HANDLER 1
62#endif
63
64// Squash MS LNK4221 and libtool warnings
65extern const char RIJNDAEL_SIMD_FNAME[] = __FILE__;
66
67NAMESPACE_BEGIN(CryptoPP)
68
69// ************************* Feature Probes ************************* //
70
71#ifdef CRYPTOPP_GNU_STYLE_INLINE_ASSEMBLY
72extern "C" {
73 typedef void (*SigHandler)(int);
74
75 static jmp_buf s_jmpSIGILL;
76 static void SigIllHandler(int)
77 {
78 longjmp(s_jmpSIGILL, 1);
79 }
80}
81#endif // Not CRYPTOPP_MS_STYLE_INLINE_ASSEMBLY
82
83#if (CRYPTOPP_BOOL_ARM32 || CRYPTOPP_BOOL_ARMV8)
84bool CPU_ProbeAES()
85{
86#if defined(CRYPTOPP_NO_CPU_FEATURE_PROBES)
87 return false;
88#elif (CRYPTOPP_ARM_AES_AVAILABLE)
89# if defined(CRYPTOPP_MS_STYLE_INLINE_ASSEMBLY)
90 volatile bool result = true;
91 __try
92 {
93 // AES encrypt and decrypt
94 uint8x16_t data = vdupq_n_u8(0), key = vdupq_n_u8(0);
95 uint8x16_t r1 = vaeseq_u8(data, key);
96 uint8x16_t r2 = vaesdq_u8(data, key);
97 r1 = vaesmcq_u8(r1);
98 r2 = vaesimcq_u8(r2);
99
100 result = !!(vgetq_lane_u8(r1,0) | vgetq_lane_u8(r2,7));
101 }
102 __except (EXCEPTION_EXECUTE_HANDLER)
103 {
104 return false;
105 }
106 return result;
107# else
108
109 // longjmp and clobber warnings. Volatile is required.
110 // http://github.com/weidai11/cryptopp/issues/24 and http://stackoverflow.com/q/7721854
111 volatile bool result = true;
112
113 volatile SigHandler oldHandler = signal(SIGILL, SigIllHandler);
114 if (oldHandler == SIG_ERR)
115 return false;
116
117 volatile sigset_t oldMask;
118 if (sigprocmask(0, NULLPTR, (sigset_t*)&oldMask))
119 {
120 signal(SIGILL, oldHandler);
121 return false;
122 }
123
124 if (setjmp(s_jmpSIGILL))
125 result = false;
126 else
127 {
128 uint8x16_t data = vdupq_n_u8(0), key = vdupq_n_u8(0);
129 uint8x16_t r1 = vaeseq_u8(data, key);
130 uint8x16_t r2 = vaesdq_u8(data, key);
131 r1 = vaesmcq_u8(r1);
132 r2 = vaesimcq_u8(r2);
133
134 // Hack... GCC optimizes away the code and returns true
135 result = !!(vgetq_lane_u8(r1,0) | vgetq_lane_u8(r2,7));
136 }
137
138 sigprocmask(SIG_SETMASK, (sigset_t*)&oldMask, NULLPTR);
139 signal(SIGILL, oldHandler);
140 return result;
141# endif
142#else
143 return false;
144#endif // CRYPTOPP_ARM_AES_AVAILABLE
145}
146#endif // ARM32 or ARM64
147
148// ***************************** ARMv8 ***************************** //
149
150#if (CRYPTOPP_ARM_AES_AVAILABLE)
151
152ANONYMOUS_NAMESPACE_BEGIN
153
154inline void ARMV8_Enc_Block(uint64x2_t &data, const word32 *subkeys, unsigned int rounds)
155{
156 CRYPTOPP_ASSERT(subkeys);
157 const byte *keys = reinterpret_cast<const byte*>(subkeys);
158 uint8x16_t block = vreinterpretq_u8_u64(data);
159
160 // AES single round encryption
161 block = vaeseq_u8(block, vld1q_u8(keys+0*16));
162 // AES mix columns
163 block = vaesmcq_u8(block);
164
165 for (unsigned int i=1; i<rounds-1; i+=2)
166 {
167 // AES single round encryption
168 block = vaeseq_u8(block, vld1q_u8(keys+i*16));
169 // AES mix columns
170 block = vaesmcq_u8(block);
171 // AES single round encryption
172 block = vaeseq_u8(block, vld1q_u8(keys+(i+1)*16));
173 // AES mix columns
174 block = vaesmcq_u8(block);
175 }
176
177 // AES single round encryption
178 block = vaeseq_u8(block, vld1q_u8(keys+(rounds-1)*16));
179 // Final Add (bitwise Xor)
180 block = veorq_u8(block, vld1q_u8(keys+rounds*16));
181
182 data = vreinterpretq_u64_u8(block);
183}
184
185inline void ARMV8_Enc_6_Blocks(uint64x2_t &data0, uint64x2_t &data1,
186 uint64x2_t &data2, uint64x2_t &data3, uint64x2_t &data4, uint64x2_t &data5,
187 const word32 *subkeys, unsigned int rounds)
188{
189 CRYPTOPP_ASSERT(subkeys);
190 const byte *keys = reinterpret_cast<const byte*>(subkeys);
191
192 uint8x16_t block0 = vreinterpretq_u8_u64(data0);
193 uint8x16_t block1 = vreinterpretq_u8_u64(data1);
194 uint8x16_t block2 = vreinterpretq_u8_u64(data2);
195 uint8x16_t block3 = vreinterpretq_u8_u64(data3);
196 uint8x16_t block4 = vreinterpretq_u8_u64(data4);
197 uint8x16_t block5 = vreinterpretq_u8_u64(data5);
198
199 uint8x16_t key;
200 for (unsigned int i=0; i<rounds-1; ++i)
201 {
202 key = vld1q_u8(keys+i*16);
203 // AES single round encryption
204 block0 = vaeseq_u8(block0, key);
205 // AES mix columns
206 block0 = vaesmcq_u8(block0);
207 // AES single round encryption
208 block1 = vaeseq_u8(block1, key);
209 // AES mix columns
210 block1 = vaesmcq_u8(block1);
211 // AES single round encryption
212 block2 = vaeseq_u8(block2, key);
213 // AES mix columns
214 block2 = vaesmcq_u8(block2);
215 // AES single round encryption
216 block3 = vaeseq_u8(block3, key);
217 // AES mix columns
218 block3 = vaesmcq_u8(block3);
219 // AES single round encryption
220 block4 = vaeseq_u8(block4, key);
221 // AES mix columns
222 block4 = vaesmcq_u8(block4);
223 // AES single round encryption
224 block5 = vaeseq_u8(block5, key);
225 // AES mix columns
226 block5 = vaesmcq_u8(block5);
227 }
228
229 // AES single round encryption
230 key = vld1q_u8(keys+(rounds-1)*16);
231 block0 = vaeseq_u8(block0, key);
232 block1 = vaeseq_u8(block1, key);
233 block2 = vaeseq_u8(block2, key);
234 block3 = vaeseq_u8(block3, key);
235 block4 = vaeseq_u8(block4, key);
236 block5 = vaeseq_u8(block5, key);
237
238 // Final Add (bitwise Xor)
239 key = vld1q_u8(keys+rounds*16);
240 data0 = vreinterpretq_u64_u8(veorq_u8(block0, key));
241 data1 = vreinterpretq_u64_u8(veorq_u8(block1, key));
242 data2 = vreinterpretq_u64_u8(veorq_u8(block2, key));
243 data3 = vreinterpretq_u64_u8(veorq_u8(block3, key));
244 data4 = vreinterpretq_u64_u8(veorq_u8(block4, key));
245 data5 = vreinterpretq_u64_u8(veorq_u8(block5, key));
246}
247
248inline void ARMV8_Dec_Block(uint64x2_t &data, const word32 *subkeys, unsigned int rounds)
249{
250 CRYPTOPP_ASSERT(subkeys);
251 const byte *keys = reinterpret_cast<const byte*>(subkeys);
252 uint8x16_t block = vreinterpretq_u8_u64(data);
253
254 // AES single round decryption
255 block = vaesdq_u8(block, vld1q_u8(keys+0*16));
256 // AES inverse mix columns
257 block = vaesimcq_u8(block);
258
259 for (unsigned int i=1; i<rounds-1; i+=2)
260 {
261 // AES single round decryption
262 block = vaesdq_u8(block, vld1q_u8(keys+i*16));
263 // AES inverse mix columns
264 block = vaesimcq_u8(block);
265 // AES single round decryption
266 block = vaesdq_u8(block, vld1q_u8(keys+(i+1)*16));
267 // AES inverse mix columns
268 block = vaesimcq_u8(block);
269 }
270
271 // AES single round decryption
272 block = vaesdq_u8(block, vld1q_u8(keys+(rounds-1)*16));
273 // Final Add (bitwise Xor)
274 block = veorq_u8(block, vld1q_u8(keys+rounds*16));
275
276 data = vreinterpretq_u64_u8(block);
277}
278
279inline void ARMV8_Dec_6_Blocks(uint64x2_t &data0, uint64x2_t &data1,
280 uint64x2_t &data2, uint64x2_t &data3, uint64x2_t &data4, uint64x2_t &data5,
281 const word32 *subkeys, unsigned int rounds)
282{
283 CRYPTOPP_ASSERT(subkeys);
284 const byte *keys = reinterpret_cast<const byte*>(subkeys);
285
286 uint8x16_t block0 = vreinterpretq_u8_u64(data0);
287 uint8x16_t block1 = vreinterpretq_u8_u64(data1);
288 uint8x16_t block2 = vreinterpretq_u8_u64(data2);
289 uint8x16_t block3 = vreinterpretq_u8_u64(data3);
290 uint8x16_t block4 = vreinterpretq_u8_u64(data4);
291 uint8x16_t block5 = vreinterpretq_u8_u64(data5);
292
293 uint8x16_t key;
294 for (unsigned int i=0; i<rounds-1; ++i)
295 {
296 key = vld1q_u8(keys+i*16);
297 // AES single round decryption
298 block0 = vaesdq_u8(block0, key);
299 // AES inverse mix columns
300 block0 = vaesimcq_u8(block0);
301 // AES single round decryption
302 block1 = vaesdq_u8(block1, key);
303 // AES inverse mix columns
304 block1 = vaesimcq_u8(block1);
305 // AES single round decryption
306 block2 = vaesdq_u8(block2, key);
307 // AES inverse mix columns
308 block2 = vaesimcq_u8(block2);
309 // AES single round decryption
310 block3 = vaesdq_u8(block3, key);
311 // AES inverse mix columns
312 block3 = vaesimcq_u8(block3);
313 // AES single round decryption
314 block4 = vaesdq_u8(block4, key);
315 // AES inverse mix columns
316 block4 = vaesimcq_u8(block4);
317 // AES single round decryption
318 block5 = vaesdq_u8(block5, key);
319 // AES inverse mix columns
320 block5 = vaesimcq_u8(block5);
321 }
322
323 // AES single round decryption
324 key = vld1q_u8(keys+(rounds-1)*16);
325 block0 = vaesdq_u8(block0, key);
326 block1 = vaesdq_u8(block1, key);
327 block2 = vaesdq_u8(block2, key);
328 block3 = vaesdq_u8(block3, key);
329 block4 = vaesdq_u8(block4, key);
330 block5 = vaesdq_u8(block5, key);
331
332 // Final Add (bitwise Xor)
333 key = vld1q_u8(keys+rounds*16);
334 data0 = vreinterpretq_u64_u8(veorq_u8(block0, key));
335 data1 = vreinterpretq_u64_u8(veorq_u8(block1, key));
336 data2 = vreinterpretq_u64_u8(veorq_u8(block2, key));
337 data3 = vreinterpretq_u64_u8(veorq_u8(block3, key));
338 data4 = vreinterpretq_u64_u8(veorq_u8(block4, key));
339 data5 = vreinterpretq_u64_u8(veorq_u8(block5, key));
340}
341
342ANONYMOUS_NAMESPACE_END
343
344size_t Rijndael_Enc_AdvancedProcessBlocks_ARMV8(const word32 *subKeys, size_t rounds,
345 const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
346{
347 return AdvancedProcessBlocks128_6x1_NEON(ARMV8_Enc_Block, ARMV8_Enc_6_Blocks,
348 subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
349}
350
351size_t Rijndael_Dec_AdvancedProcessBlocks_ARMV8(const word32 *subKeys, size_t rounds,
352 const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
353{
354 return AdvancedProcessBlocks128_6x1_NEON(ARMV8_Dec_Block, ARMV8_Dec_6_Blocks,
355 subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
356}
357
358#endif // CRYPTOPP_ARM_AES_AVAILABLE
359
360// ***************************** AES-NI ***************************** //
361
362#if (CRYPTOPP_AESNI_AVAILABLE)
363
364ANONYMOUS_NAMESPACE_BEGIN
365
366/* for 128-bit blocks, Rijndael never uses more than 10 rcon values */
367CRYPTOPP_ALIGN_DATA(16)
368const word32 s_rconLE[] = {
369 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1B, 0x36
370};
371
372inline void AESNI_Enc_Block(__m128i &block, MAYBE_CONST word32 *subkeys, unsigned int rounds)
373{
374 const __m128i* skeys = reinterpret_cast<const __m128i*>(subkeys);
375
376 block = _mm_xor_si128(block, skeys[0]);
377 for (unsigned int i=1; i<rounds-1; i+=2)
378 {
379 block = _mm_aesenc_si128(block, skeys[i]);
380 block = _mm_aesenc_si128(block, skeys[i+1]);
381 }
382 block = _mm_aesenc_si128(block, skeys[rounds-1]);
383 block = _mm_aesenclast_si128(block, skeys[rounds]);
384}
385
386inline void AESNI_Enc_4_Blocks(__m128i &block0, __m128i &block1, __m128i &block2, __m128i &block3,
387 MAYBE_CONST word32 *subkeys, unsigned int rounds)
388{
389 const __m128i* skeys = reinterpret_cast<const __m128i*>(subkeys);
390
391 __m128i rk = skeys[0];
392 block0 = _mm_xor_si128(block0, rk);
393 block1 = _mm_xor_si128(block1, rk);
394 block2 = _mm_xor_si128(block2, rk);
395 block3 = _mm_xor_si128(block3, rk);
396 for (unsigned int i=1; i<rounds; i++)
397 {
398 rk = skeys[i];
399 block0 = _mm_aesenc_si128(block0, rk);
400 block1 = _mm_aesenc_si128(block1, rk);
401 block2 = _mm_aesenc_si128(block2, rk);
402 block3 = _mm_aesenc_si128(block3, rk);
403 }
404 rk = skeys[rounds];
405 block0 = _mm_aesenclast_si128(block0, rk);
406 block1 = _mm_aesenclast_si128(block1, rk);
407 block2 = _mm_aesenclast_si128(block2, rk);
408 block3 = _mm_aesenclast_si128(block3, rk);
409}
410
411inline void AESNI_Dec_Block(__m128i &block, MAYBE_CONST word32 *subkeys, unsigned int rounds)
412{
413 const __m128i* skeys = reinterpret_cast<const __m128i*>(subkeys);
414
415 block = _mm_xor_si128(block, skeys[0]);
416 for (unsigned int i=1; i<rounds-1; i+=2)
417 {
418 block = _mm_aesdec_si128(block, skeys[i]);
419 block = _mm_aesdec_si128(block, skeys[i+1]);
420 }
421 block = _mm_aesdec_si128(block, skeys[rounds-1]);
422 block = _mm_aesdeclast_si128(block, skeys[rounds]);
423}
424
425inline void AESNI_Dec_4_Blocks(__m128i &block0, __m128i &block1, __m128i &block2, __m128i &block3,
426 MAYBE_CONST word32 *subkeys, unsigned int rounds)
427{
428 const __m128i* skeys = reinterpret_cast<const __m128i*>(subkeys);
429
430 __m128i rk = skeys[0];
431 block0 = _mm_xor_si128(block0, rk);
432 block1 = _mm_xor_si128(block1, rk);
433 block2 = _mm_xor_si128(block2, rk);
434 block3 = _mm_xor_si128(block3, rk);
435 for (unsigned int i=1; i<rounds; i++)
436 {
437 rk = skeys[i];
438 block0 = _mm_aesdec_si128(block0, rk);
439 block1 = _mm_aesdec_si128(block1, rk);
440 block2 = _mm_aesdec_si128(block2, rk);
441 block3 = _mm_aesdec_si128(block3, rk);
442 }
443 rk = skeys[rounds];
444 block0 = _mm_aesdeclast_si128(block0, rk);
445 block1 = _mm_aesdeclast_si128(block1, rk);
446 block2 = _mm_aesdeclast_si128(block2, rk);
447 block3 = _mm_aesdeclast_si128(block3, rk);
448}
449
450ANONYMOUS_NAMESPACE_END
451
452void Rijndael_UncheckedSetKey_SSE4_AESNI(const byte *userKey, size_t keyLen, word32 *rk)
453{
454 const size_t rounds = keyLen / 4 + 6;
455 const word32 *rc = s_rconLE;
456
457 __m128i temp = _mm_loadu_si128(M128_CAST(userKey+keyLen-16));
458 std::memcpy(rk, userKey, keyLen);
459
460 // keySize: m_key allocates 4*(rounds+1) word32's.
461 const size_t keySize = 4*(rounds+1);
462 const word32* end = rk + keySize;
463
464 while (true)
465 {
466 rk[keyLen/4] = rk[0] ^ _mm_extract_epi32(_mm_aeskeygenassist_si128(temp, 0), 3) ^ *(rc++);
467 rk[keyLen/4+1] = rk[1] ^ rk[keyLen/4];
468 rk[keyLen/4+2] = rk[2] ^ rk[keyLen/4+1];
469 rk[keyLen/4+3] = rk[3] ^ rk[keyLen/4+2];
470
471 if (rk + keyLen/4 + 4 == end)
472 break;
473
474 if (keyLen == 24)
475 {
476 rk[10] = rk[ 4] ^ rk[ 9];
477 rk[11] = rk[ 5] ^ rk[10];
478 temp = _mm_insert_epi32(temp, rk[11], 3);
479 }
480 else if (keyLen == 32)
481 {
482 temp = _mm_insert_epi32(temp, rk[11], 3);
483 rk[12] = rk[ 4] ^ _mm_extract_epi32(_mm_aeskeygenassist_si128(temp, 0), 2);
484 rk[13] = rk[ 5] ^ rk[12];
485 rk[14] = rk[ 6] ^ rk[13];
486 rk[15] = rk[ 7] ^ rk[14];
487 temp = _mm_insert_epi32(temp, rk[15], 3);
488 }
489 else
490 {
491 temp = _mm_insert_epi32(temp, rk[7], 3);
492 }
493
494 rk += keyLen/4;
495 }
496}
497
498void Rijndael_UncheckedSetKeyRev_AESNI(word32 *key, unsigned int rounds)
499{
500 unsigned int i, j;
501 __m128i temp;
502
503 vec_swap(*M128_CAST(key), *M128_CAST(key+4*rounds));
504
505 for (i = 4, j = 4*rounds-4; i < j; i += 4, j -= 4)
506 {
507 temp = _mm_aesimc_si128(*M128_CAST(key+i));
508 *M128_CAST(key+i) = _mm_aesimc_si128(*M128_CAST(key+j));
509 *M128_CAST(key+j) = temp;
510 }
511
512 *M128_CAST(key+i) = _mm_aesimc_si128(*M128_CAST(key+i));
513}
514
515size_t Rijndael_Enc_AdvancedProcessBlocks_AESNI(const word32 *subKeys, size_t rounds,
516 const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
517{
518 // SunCC workaround
520 MAYBE_CONST byte* ib = MAYBE_UNCONST_CAST(byte*, inBlocks);
521 MAYBE_CONST byte* xb = MAYBE_UNCONST_CAST(byte*, xorBlocks);
522
523 return AdvancedProcessBlocks128_4x1_SSE(AESNI_Enc_Block, AESNI_Enc_4_Blocks,
524 sk, rounds, ib, xb, outBlocks, length, flags);
525}
526
527size_t Rijndael_Dec_AdvancedProcessBlocks_AESNI(const word32 *subKeys, size_t rounds,
528 const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
529{
531 MAYBE_CONST byte* ib = MAYBE_UNCONST_CAST(byte*, inBlocks);
532 MAYBE_CONST byte* xb = MAYBE_UNCONST_CAST(byte*, xorBlocks);
533
534 return AdvancedProcessBlocks128_4x1_SSE(AESNI_Dec_Block, AESNI_Dec_4_Blocks,
535 sk, rounds, ib, xb, outBlocks, length, flags);
536}
537
538#endif // CRYPTOPP_AESNI_AVAILABLE
539
540// ************************** Power 8 Crypto ************************** //
541
542#if (CRYPTOPP_POWER8_AES_AVAILABLE)
543
544ANONYMOUS_NAMESPACE_BEGIN
545
546/* for 128-bit blocks, Rijndael never uses more than 10 rcon values */
547CRYPTOPP_ALIGN_DATA(16)
548static const uint32_t s_rconBE[] = {
549 0x01000000, 0x02000000, 0x04000000, 0x08000000,
550 0x10000000, 0x20000000, 0x40000000, 0x80000000,
551 0x1B000000, 0x36000000
552};
553
554inline void POWER8_Enc_Block(uint32x4_p &block, const word32 *subkeys, unsigned int rounds)
555{
556 CRYPTOPP_ASSERT(IsAlignedOn(subkeys, 16));
557 const byte *keys = reinterpret_cast<const byte*>(subkeys);
558
559 uint32x4_p k = VecLoadAligned(keys);
560 block = VecXor(block, k);
561
562 for (size_t i=1; i<rounds-1; i+=2)
563 {
564 block = VecEncrypt(block, VecLoadAligned( i*16, keys));
565 block = VecEncrypt(block, VecLoadAligned((i+1)*16, keys));
566 }
567
568 block = VecEncrypt(block, VecLoadAligned((rounds-1)*16, keys));
569 block = VecEncryptLast(block, VecLoadAligned(rounds*16, keys));
570}
571
572inline void POWER8_Enc_6_Blocks(uint32x4_p &block0, uint32x4_p &block1,
573 uint32x4_p &block2, uint32x4_p &block3, uint32x4_p &block4,
574 uint32x4_p &block5, const word32 *subkeys, unsigned int rounds)
575{
576 CRYPTOPP_ASSERT(IsAlignedOn(subkeys, 16));
577 const byte *keys = reinterpret_cast<const byte*>(subkeys);
578
579 uint32x4_p k = VecLoadAligned(keys);
580 block0 = VecXor(block0, k);
581 block1 = VecXor(block1, k);
582 block2 = VecXor(block2, k);
583 block3 = VecXor(block3, k);
584 block4 = VecXor(block4, k);
585 block5 = VecXor(block5, k);
586
587 for (size_t i=1; i<rounds; ++i)
588 {
589 k = VecLoadAligned(i*16, keys);
590 block0 = VecEncrypt(block0, k);
591 block1 = VecEncrypt(block1, k);
592 block2 = VecEncrypt(block2, k);
593 block3 = VecEncrypt(block3, k);
594 block4 = VecEncrypt(block4, k);
595 block5 = VecEncrypt(block5, k);
596 }
597
598 k = VecLoadAligned(rounds*16, keys);
599 block0 = VecEncryptLast(block0, k);
600 block1 = VecEncryptLast(block1, k);
601 block2 = VecEncryptLast(block2, k);
602 block3 = VecEncryptLast(block3, k);
603 block4 = VecEncryptLast(block4, k);
604 block5 = VecEncryptLast(block5, k);
605}
606
607inline void POWER8_Dec_Block(uint32x4_p &block, const word32 *subkeys, unsigned int rounds)
608{
609 CRYPTOPP_ASSERT(IsAlignedOn(subkeys, 16));
610 const byte *keys = reinterpret_cast<const byte*>(subkeys);
611
612 uint32x4_p k = VecLoadAligned(rounds*16, keys);
613 block = VecXor(block, k);
614
615 for (size_t i=rounds-1; i>1; i-=2)
616 {
617 block = VecDecrypt(block, VecLoadAligned( i*16, keys));
618 block = VecDecrypt(block, VecLoadAligned((i-1)*16, keys));
619 }
620
621 block = VecDecrypt(block, VecLoadAligned(16, keys));
622 block = VecDecryptLast(block, VecLoadAligned(0, keys));
623}
624
625inline void POWER8_Dec_6_Blocks(uint32x4_p &block0, uint32x4_p &block1,
626 uint32x4_p &block2, uint32x4_p &block3, uint32x4_p &block4,
627 uint32x4_p &block5, const word32 *subkeys, unsigned int rounds)
628{
629 CRYPTOPP_ASSERT(IsAlignedOn(subkeys, 16));
630 const byte *keys = reinterpret_cast<const byte*>(subkeys);
631
632 uint32x4_p k = VecLoadAligned(rounds*16, keys);
633 block0 = VecXor(block0, k);
634 block1 = VecXor(block1, k);
635 block2 = VecXor(block2, k);
636 block3 = VecXor(block3, k);
637 block4 = VecXor(block4, k);
638 block5 = VecXor(block5, k);
639
640 for (size_t i=rounds-1; i>0; --i)
641 {
642 k = VecLoadAligned(i*16, keys);
643 block0 = VecDecrypt(block0, k);
644 block1 = VecDecrypt(block1, k);
645 block2 = VecDecrypt(block2, k);
646 block3 = VecDecrypt(block3, k);
647 block4 = VecDecrypt(block4, k);
648 block5 = VecDecrypt(block5, k);
649 }
650
651 k = VecLoadAligned(0, keys);
652 block0 = VecDecryptLast(block0, k);
653 block1 = VecDecryptLast(block1, k);
654 block2 = VecDecryptLast(block2, k);
655 block3 = VecDecryptLast(block3, k);
656 block4 = VecDecryptLast(block4, k);
657 block5 = VecDecryptLast(block5, k);
658}
659
660ANONYMOUS_NAMESPACE_END
661
662void Rijndael_UncheckedSetKey_POWER8(const byte* userKey, size_t keyLen, word32* rk, const byte* Se)
663{
664 const size_t rounds = keyLen / 4 + 6;
665 const word32 *rc = s_rconBE;
666 word32 *rkey = rk, temp;
667
668 GetUserKey(BIG_ENDIAN_ORDER, rkey, keyLen/4, userKey, keyLen);
669
670 // keySize: m_key allocates 4*(rounds+1) word32's.
671 const size_t keySize = 4*(rounds+1);
672 const word32* end = rkey + keySize;
673
674 while (true)
675 {
676 temp = rkey[keyLen/4-1];
677 word32 x = (word32(Se[GETBYTE(temp, 2)]) << 24) ^ (word32(Se[GETBYTE(temp, 1)]) << 16) ^
678 (word32(Se[GETBYTE(temp, 0)]) << 8) ^ Se[GETBYTE(temp, 3)];
679 rkey[keyLen/4] = rkey[0] ^ x ^ *(rc++);
680 rkey[keyLen/4+1] = rkey[1] ^ rkey[keyLen/4];
681 rkey[keyLen/4+2] = rkey[2] ^ rkey[keyLen/4+1];
682 rkey[keyLen/4+3] = rkey[3] ^ rkey[keyLen/4+2];
683
684 if (rkey + keyLen/4 + 4 == end)
685 break;
686
687 if (keyLen == 24)
688 {
689 rkey[10] = rkey[ 4] ^ rkey[ 9];
690 rkey[11] = rkey[ 5] ^ rkey[10];
691 }
692 else if (keyLen == 32)
693 {
694 temp = rkey[11];
695 rkey[12] = rkey[ 4] ^ (word32(Se[GETBYTE(temp, 3)]) << 24) ^ (word32(Se[GETBYTE(temp, 2)]) << 16) ^ (word32(Se[GETBYTE(temp, 1)]) << 8) ^ Se[GETBYTE(temp, 0)];
696 rkey[13] = rkey[ 5] ^ rkey[12];
697 rkey[14] = rkey[ 6] ^ rkey[13];
698 rkey[15] = rkey[ 7] ^ rkey[14];
699 }
700 rkey += keyLen/4;
701 }
702
703#if (CRYPTOPP_LITTLE_ENDIAN)
704 rkey = rk;
705 const uint8x16_p mask = {12,13,14,15, 8,9,10,11, 4,5,6,7, 0,1,2,3};
706
707 unsigned int i=0;
708 for (i=0; i<rounds; i+=2, rkey+=8)
709 {
710 VecStore(VecPermute(VecLoad(rkey+0), mask), rkey+0);
711 VecStore(VecPermute(VecLoad(rkey+4), mask), rkey+4);
712 }
713
714 for ( ; i<rounds+1; i++, rkey+=4)
715 VecStore(VecPermute(VecLoad(rkey), mask), rkey);
716#endif
717}
718
719size_t Rijndael_Enc_AdvancedProcessBlocks128_6x1_ALTIVEC(const word32 *subKeys, size_t rounds,
720 const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
721{
722 return AdvancedProcessBlocks128_6x1_ALTIVEC(POWER8_Enc_Block, POWER8_Enc_6_Blocks,
723 subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
724}
725
726size_t Rijndael_Dec_AdvancedProcessBlocks128_6x1_ALTIVEC(const word32 *subKeys, size_t rounds,
727 const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
728{
729 return AdvancedProcessBlocks128_6x1_ALTIVEC(POWER8_Dec_Block, POWER8_Dec_6_Blocks,
730 subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
731}
732
733#endif // CRYPTOPP_POWER8_AES_AVAILABLE
734NAMESPACE_END
Template for AdvancedProcessBlocks and SIMD processing.
#define MAYBE_UNCONST_CAST(T, x)
SunCC workaround.
Definition: adv_simd.h:595
size_t AdvancedProcessBlocks128_6x1_ALTIVEC(F1 func1, F6 func6, const W *subKeys, size_t rounds, const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
AdvancedProcessBlocks for 1 and 6 blocks.
Definition: adv_simd.h:1116
#define M128_CAST(x)
Clang workaround.
Definition: adv_simd.h:609
size_t AdvancedProcessBlocks128_6x1_NEON(F1 func1, F6 func6, const W *subKeys, size_t rounds, const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
AdvancedProcessBlocks for 1 and 6 blocks.
Definition: adv_simd.h:100
#define MAYBE_CONST
SunCC workaround.
Definition: adv_simd.h:590
size_t AdvancedProcessBlocks128_4x1_SSE(F1 func1, F4 func4, const W *subKeys, size_t rounds, const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
AdvancedProcessBlocks for 1 and 4 blocks.
Definition: adv_simd.h:830
Library configuration file.
unsigned int word32
32-bit unsigned datatype
Definition: config_int.h:62
@ BIG_ENDIAN_ORDER
byte order is big-endian
Definition: cryptlib.h:147
Utility functions for the Crypto++ library.
bool IsAlignedOn(const void *ptr, unsigned int alignment)
Determines whether ptr is aligned to a minimum value.
Definition: misc.h:1227
void vec_swap(T &a, T &b)
Swaps two variables which are arrays.
Definition: misc.h:616
void GetUserKey(ByteOrder order, T *out, size_t outlen, const byte *in, size_t inlen)
Copy bytes in a buffer to an array of elements in big-endian order.
Definition: misc.h:2291
Crypto++ library namespace.
Precompiled header file.
Support functions for PowerPC and vector operations.
uint32x4_p VecLoadAligned(const byte src[16])
Loads a vector from an aligned byte array.
Definition: ppc_simd.h:560
__vector unsigned int uint32x4_p
Vector of 32-bit elements.
Definition: ppc_simd.h:202
T1 VecPermute(const T1 vec, const T2 mask)
Permutes a vector.
Definition: ppc_simd.h:1478
__vector unsigned char uint8x16_p
Vector of 8-bit elements.
Definition: ppc_simd.h:192
T1 VecXor(const T1 vec1, const T2 vec2)
XOR two vectors.
Definition: ppc_simd.h:1414
T1 VecEncryptLast(const T1 state, const T2 key)
Final round of AES encryption.
Definition: ppc_simd.h:2634
T1 VecEncrypt(const T1 state, const T2 key)
One round of AES encryption.
Definition: ppc_simd.h:2609
T1 VecDecryptLast(const T1 state, const T2 key)
Final round of AES decryption.
Definition: ppc_simd.h:2684
T1 VecDecrypt(const T1 state, const T2 key)
One round of AES decryption.
Definition: ppc_simd.h:2659
void VecStore(const T data, byte dest[16])
Stores a vector to a byte array.
Definition: ppc_simd.h:895
uint32x4_p VecLoad(const byte src[16])
Loads a vector from a byte array.
Definition: ppc_simd.h:369
#define CRYPTOPP_ASSERT(exp)
Debugging and diagnostic assertion.
Definition: trap.h:68