5#ifndef CRYPTOPP_IMPORTS
21const word s_lastSmallPrime = 32719;
25 std::vector<word16> * operator()()
const
27 const unsigned int maxPrimeTableSize = 3511;
30 std::vector<word16> &primeTable = *pPrimeTable;
31 primeTable.reserve(maxPrimeTableSize);
33 primeTable.push_back(2);
34 unsigned int testEntriesEnd = 1;
36 for (
unsigned int p=3; p<=s_lastSmallPrime; p+=2)
39 for (j=1; j<testEntriesEnd; j++)
40 if (p%primeTable[j] == 0)
42 if (j == testEntriesEnd)
44 primeTable.push_back(
word16(p));
45 testEntriesEnd =
UnsignedMin(54U, primeTable.size());
49 return pPrimeTable.release();
56 size = (
unsigned int)primeTable.size();
57 return &primeTable[0];
62 unsigned int primeTableSize;
65 if (p.
IsPositive() && p <= primeTable[primeTableSize-1])
66 return std::binary_search(primeTable, primeTable+primeTableSize, (
word16)p.
ConvertToLong());
73 unsigned int primeTableSize;
79 for (i = 0; primeTable[i]<bound; i++)
80 if ((p % primeTable[i]) == 0)
83 if (bound == primeTable[i])
84 return (p % bound == 0);
91 unsigned int primeTableSize;
102 return a_exp_b_mod_c(b, n-1, n)==1;
112 if ((n.
IsEven() && n!=2) ||
GCD(b, n) != 1)
124 Integer z = a_exp_b_mod_c(b, m, n);
125 if (z==1 || z==nminus1)
127 for (
unsigned j=1; j<a; j++)
146 for (
unsigned int i=0; i<rounds; i++)
148 b.Randomize(rng, 2, n-2);
169 while ((j=
Jacobi(b.Squared()-4, n)) == 1)
179 return Lucas(n+1, b, n)==2;
196 while ((j=
Jacobi(b.Squared()-4, n)) == 1)
220 z = (z.Squared()-2)%n;
229struct NewLastSmallPrimeSquared
239 if (p <= s_lastSmallPrime)
255unsigned int PrimeSearchInterval(
const Integer &max)
260static inline bool FastProbablePrimeTest(
const Integer &n)
267 if (productBitLength < 16)
272 if (productBitLength%2==0)
274 minP =
Integer(182) << (productBitLength/2-8);
280 maxP =
Integer(181) << ((productBitLength+1)/2-8);
291 bool NextCandidate(
Integer &c);
296 Integer m_first, m_last, m_step;
299 std::vector<bool> m_sieve;
302PrimeSieve::PrimeSieve(
const Integer &first,
const Integer &last,
const Integer &step,
signed int delta)
303 : m_first(first), m_last(last), m_step(step), m_delta(delta), m_next(0)
308bool PrimeSieve::NextCandidate(
Integer &c)
310 bool safe =
SafeConvert(std::find(m_sieve.begin()+m_next, m_sieve.end(),
false) - m_sieve.begin(), m_next);
312 if (m_next == m_sieve.size())
314 m_first += long(m_sieve.size())*m_step;
315 if (m_first > m_last)
321 return NextCandidate(c);
326 c = m_first + long(m_next)*m_step;
336 size_t sieveSize = sieve.size();
337 size_t j = (
word32(p-(first%p))*stepInv) % p;
339 if (first.
WordCount() <= 1 && first + step*long(j) == p)
341 for (; j < sieveSize; j += p)
346void PrimeSieve::DoSieve()
348 unsigned int primeTableSize;
351 const unsigned int maxSieveSize = 32768;
352 unsigned int sieveSize =
STDMIN(
Integer(maxSieveSize), (m_last-m_first)/m_step+1).ConvertToLong();
355 m_sieve.resize(sieveSize,
false);
359 for (
unsigned int i = 0; i < primeTableSize; ++i)
360 SieveSingle(m_sieve, primeTable[i], m_first, m_step, (
word16)m_step.InverseMod(primeTable[i]));
365 Integer qFirst = (m_first-m_delta) >> 1;
366 Integer halfStep = m_step >> 1;
367 for (
unsigned int i = 0; i < primeTableSize; ++i)
371 SieveSingle(m_sieve, p, m_first, m_step, stepInv);
373 word16 halfStepInv = 2*stepInv < p ? 2*stepInv : 2*stepInv-p;
374 SieveSingle(m_sieve, p, qFirst, halfStep, halfStepInv);
387 if (p <= gcd && gcd <= max &&
IsPrime(gcd) && (!pSelector || pSelector->IsAcceptable(gcd)))
396 unsigned int primeTableSize;
399 if (p <= primeTable[primeTableSize-1])
405 pItr = std::upper_bound(primeTable, primeTable+primeTableSize, (
word)p.
ConvertToLong());
409 while (pItr < primeTable+primeTableSize && !(*pItr%mod == equiv && (!pSelector || pSelector->IsAcceptable(*pItr))))
412 if (pItr < primeTable+primeTableSize)
418 p = primeTable[primeTableSize-1]+1;
424 return FirstPrime(p, max,
CRT(equiv, mod, 1, 2, 1), mod<<1, pSelector);
431 PrimeSieve sieve(p, max, mod);
433 while (sieve.NextCandidate(p))
435 if ((!pSelector || pSelector->IsAcceptable(p)) && FastProbablePrimeTest(p) &&
IsPrime(p))
454 if (((r%q).Squared()-4*(r/q)).IsSquare())
457 unsigned int primeTableSize;
461 for (
int i=0; i<50; i++)
463 Integer b = a_exp_b_mod_c(primeTable[i], r, p);
465 return a_exp_b_mod_c(b, q, p) == 1;
476 if (maxP <=
Integer(s_lastSmallPrime).Squared())
483 unsigned int qbits = (pbits+2)/3 + 1 + rng.
GenerateWord32(0, pbits/36);
497 PrimeSieve sieve(p,
STDMIN(p+PrimeSearchInterval(maxP)*q2, maxP), q2);
499 while (sieve.NextCandidate(p))
501 if (FastProbablePrimeTest(p) && ProvePrime(p, q))
512 const unsigned smallPrimeBound = 29, c_opt=10;
515 unsigned int primeTableSize;
518 if (bits < smallPrimeBound)
526 const unsigned margin = bits > 50 ? 20 : (bits-10)/2;
529 relativeSize = std::pow(2.0,
double(rng.
GenerateWord32())/0xffffffff - 1);
530 while (bits * relativeSize >= bits - margin);
536 unsigned int trialDivisorBound = (
unsigned int)
STDMIN((
unsigned long)primeTable[primeTableSize-1], (
unsigned long)bits*bits/c_opt);
537 bool success =
false;
541 p *= q; p <<= 1; ++p;
545 b = a_exp_b_mod_c(a, (p-1)/q, p);
546 success = (
GCD(b-1, p) == 1) && (a_exp_b_mod_c(b, q, p) == 1);
556 return p * (u * (xq-xp) % q) + xp;
575 return a_exp_b_mod_c(a, (p+1)/4, p);
586 while (
Jacobi(n, p) != -1)
589 Integer y = a_exp_b_mod_c(n, q, p);
590 Integer x = a_exp_b_mod_c(a, (q-1)/2, p);
591 Integer b = (x.Squared()%p)*a%p;
609 for (
unsigned i=0; i<r-m-1; i++)
623 Integer D = (b.Squared() - 4*a*c) % p;
632 r1 = r2 = (-b*(a+a).InverseMod(p)) % p;
637 Integer t = (a+a).InverseMod(p);
665 return CRT(p2, p, q2, q, u);
802 while (a.GetBit(i)==0)
806 if (i%2==1 && (b%8==3 || b%8==5))
809 if (a%4==3 && b%4==3)
816 return (b==1) ? result : 0;
827 Integer v=p, v1=m.Subtract(m.Square(p), two);
835 v = m.Subtract(m.Multiply(v,v1), p);
837 v1 = m.Subtract(m.Square(v1), two);
842 v1 = m.Subtract(m.Multiply(v,v1), p);
844 v = m.Subtract(m.Square(v), two);
847 return m.ConvertOut(v);
1011 #pragma omp parallel
1012 #pragma omp sections
1034 return CRT(p2, p, q2, q, u);
1042 else return (
unsigned int)(2.4 * std::pow((
double)n, 1.0/3.0) * std::pow(log(
double(n)), 2.0/3.0) - 5);
1049 else return (
unsigned int)(2.4 * std::pow((
double)n, 1.0/3.0) * std::pow(log(
double(n)), 2.0/3.0) - 5);
1060 if (qbits+1 == pbits)
1064 bool success =
false;
1069 PrimeSieve sieve(p,
STDMIN(p+PrimeSearchInterval(maxP)*12, maxP), 12, delta);
1071 while (sieve.NextCandidate(p))
1076 if (FastProbablePrimeTest(q) && FastProbablePrimeTest(p) &&
IsPrime(q) &&
IsPrime(p))
1088 for (g=2;
Jacobi(g, p) != 1; ++g) {}
1090 CRYPTOPP_ASSERT((p%8==1 || p%8==7) ? g==2 : (p%12==1 || p%12==11) ? g==3 : g==4);
1120 g = a_exp_b_mod_c(h, (p-1)/q, p);
1132 g =
Lucas((p+1)/q, h, p);
Classes for working with NameValuePairs.
AlgorithmParameters MakeParameters(const char *name, const T &value, bool throwIfNotUsed=true)
Create an object that implements NameValuePairs.
An object that implements NameValuePairs.
Multiple precision integer with arithmetic operations.
bool GetBit(size_t i) const
Provides the i-th bit of the Integer.
bool IsPositive() const
Determines if the Integer is positive.
signed long ConvertToLong() const
Convert the Integer to Long.
bool IsSquare() const
Determine whether this integer is a perfect square.
static const Integer & Zero()
Integer representing 0.
void Randomize(RandomNumberGenerator &rng, size_t bitCount)
Set this Integer to random integer.
static Integer Power2(size_t e)
Exponentiates to a power of 2.
Integer Squared() const
Multiply this integer by itself.
unsigned int BitCount() const
Determines the number of bits required to represent the Integer.
unsigned int WordCount() const
Determines the number of words required to represent the Integer.
@ ANY
a number with no special properties
@ PRIME
a number which is probabilistically prime
static const Integer & Two()
Integer representing 2.
bool IsNegative() const
Determines if the Integer is negative.
bool IsOdd() const
Determines if the Integer is odd parity.
Integer InverseMod(const Integer &n) const
Calculate multiplicative inverse.
static const Integer & One()
Integer representing 1.
bool IsEven() const
Determines if the Integer is even parity.
An invalid argument was detected.
Performs modular arithmetic in Montgomery representation for increased speed.
void Generate(signed int delta, RandomNumberGenerator &rng, unsigned int pbits, unsigned qbits)
Generate a Prime and Generator.
Application callback to signal suitability of a cabdidate prime.
Interface for random number generators.
virtual word32 GenerateWord32(word32 min=0, word32 max=0xffffffffUL)
Generate a random 32 bit word in the range min to max, inclusive.
Restricts the instantiation of a class to one static object without locks.
Pointer that overloads operator ->
word64 word
Full word used for multiprecision integer arithmetic.
unsigned int word32
32-bit unsigned datatype
unsigned short word16
16-bit unsigned datatype
Multiple precision integer with arithmetic operations.
Utility functions for the Crypto++ library.
const T & STDMIN(const T &a, const T &b)
Replacement function for std::min.
bool SafeConvert(T1 from, T2 &to)
Tests whether a conversion from -> to is safe to perform.
const T1 UnsignedMin(const T1 &a, const T2 &b)
Safe comparison of values that could be negative and incorrectly promoted.
Class file for performing modular arithmetic.
Crypto++ library namespace.
Classes and functions for number theoretic operations.
CRYPTOPP_DLL int Jacobi(const Integer &a, const Integer &b)
Calculate the Jacobi symbol.
CRYPTOPP_DLL bool IsPrime(const Integer &p)
Verifies a number is probably prime.
CRYPTOPP_DLL const word16 * GetPrimeTable(unsigned int &size)
The Small Prime table.
CRYPTOPP_DLL Integer MihailescuProvablePrime(RandomNumberGenerator &rng, unsigned int bits)
Generates a provable prime.
CRYPTOPP_DLL bool IsStrongLucasProbablePrime(const Integer &n)
Determine if a number is probably prime.
CRYPTOPP_DLL unsigned int DiscreteLogWorkFactor(unsigned int bitlength)
Estimate work factor.
Integer ModularExponentiation(const Integer &x, const Integer &e, const Integer &m)
Modular exponentiation.
CRYPTOPP_DLL Integer ModularSquareRoot(const Integer &a, const Integer &p)
Extract a modular square root.
CRYPTOPP_DLL bool IsSmallPrime(const Integer &p)
Tests whether a number is a small prime.
CRYPTOPP_DLL bool SolveModularQuadraticEquation(Integer &r1, Integer &r2, const Integer &a, const Integer &b, const Integer &c, const Integer &p)
Solve a Modular Quadratic Equation.
CRYPTOPP_DLL bool RabinMillerTest(RandomNumberGenerator &rng, const Integer &n, unsigned int rounds)
Determine if a number is probably prime.
CRYPTOPP_DLL Integer MaurerProvablePrime(RandomNumberGenerator &rng, unsigned int bits)
Generates a provable prime.
CRYPTOPP_DLL Integer Lucas(const Integer &e, const Integer &p, const Integer &n)
Calculate the Lucas value.
CRYPTOPP_DLL Integer InverseLucas(const Integer &e, const Integer &m, const Integer &p, const Integer &q, const Integer &u)
Calculate the inverse Lucas value.
CRYPTOPP_DLL bool VerifyPrime(RandomNumberGenerator &rng, const Integer &p, unsigned int level=1)
Verifies a number is probably prime.
CRYPTOPP_DLL Integer ModularRoot(const Integer &a, const Integer &dp, const Integer &dq, const Integer &p, const Integer &q, const Integer &u)
Extract a modular root.
Integer EuclideanMultiplicativeInverse(const Integer &a, const Integer &b)
Calculate multiplicative inverse.
CRYPTOPP_DLL bool SmallDivisorsTest(const Integer &p)
Tests whether a number is divisible by a small prime.
CRYPTOPP_DLL bool IsLucasProbablePrime(const Integer &n)
Determine if a number is probably prime.
Integer GCD(const Integer &a, const Integer &b)
Calculate the greatest common divisor.
CRYPTOPP_DLL bool TrialDivision(const Integer &p, unsigned bound)
Tests whether a number is divisible by a small prime.
CRYPTOPP_DLL unsigned int FactoringWorkFactor(unsigned int bitlength)
Estimate work factor.
CRYPTOPP_DLL bool IsFermatProbablePrime(const Integer &n, const Integer &b)
Determine if a number is probably prime.
CRYPTOPP_DLL Integer CRT(const Integer &xp, const Integer &p, const Integer &xq, const Integer &q, const Integer &u)
Chinese Remainder Theorem.
CRYPTOPP_DLL bool IsStrongProbablePrime(const Integer &n, const Integer &b)
Determine if a number is probably prime.
CRYPTOPP_DLL bool FirstPrime(Integer &p, const Integer &max, const Integer &equiv, const Integer &mod, const PrimeSelector *pSelector)
Finds a random prime of special form.
void swap(::SecBlock< T, A > &a, ::SecBlock< T, A > &b)
Swap two SecBlocks.
Classes for automatic resource management.
#define CRYPTOPP_ASSERT(exp)
Debugging and diagnostic assertion.