Crypto++ 8.7
Free C++ class library of cryptographic schemes
integer.h
Go to the documentation of this file.
1// integer.h - originally written and placed in the public domain by Wei Dai
2
3/// \file integer.h
4/// \brief Multiple precision integer with arithmetic operations
5/// \details The Integer class can represent positive and negative integers
6/// with absolute value less than (256**sizeof(word))<sup>(256**sizeof(int))</sup>.
7/// \details Internally, the library uses a sign magnitude representation, and the class
8/// has two data members. The first is a IntegerSecBlock (a SecBlock<word>) and it is
9/// used to hold the representation. The second is a Sign (an enumeration), and it is
10/// used to track the sign of the Integer.
11/// \details For details on how the Integer class initializes its function pointers using
12/// InitializeInteger and how it creates Integer::Zero(), Integer::One(), and
13/// Integer::Two(), then see the comments at the top of <tt>integer.cpp</tt>.
14/// \since Crypto++ 1.0
15
16#ifndef CRYPTOPP_INTEGER_H
17#define CRYPTOPP_INTEGER_H
18
19#include "cryptlib.h"
20#include "secblock.h"
21#include "stdcpp.h"
22
23#include <iosfwd>
24
25NAMESPACE_BEGIN(CryptoPP)
26
27/// \struct InitializeInteger
28/// \brief Performs static initialization of the Integer class
30{
32};
33
34// Always align, http://github.com/weidai11/cryptopp/issues/256
36
37/// \brief Multiple precision integer with arithmetic operations
38/// \details The Integer class can represent positive and negative integers
39/// with absolute value less than (256**sizeof(word))<sup>(256**sizeof(int))</sup>.
40/// \details Internally, the library uses a sign magnitude representation, and the class
41/// has two data members. The first is a IntegerSecBlock (a SecBlock<word>) and it is
42/// used to hold the representation. The second is a Sign (an enumeration), and it is
43/// used to track the sign of the Integer.
44/// \details For details on how the Integer class initializes its function pointers using
45/// InitializeInteger and how it creates Integer::Zero(), Integer::One(), and
46/// Integer::Two(), then see the comments at the top of <tt>integer.cpp</tt>.
47/// \since Crypto++ 1.0
48/// \nosubgrouping
49class CRYPTOPP_DLL Integer : private InitializeInteger, public ASN1Object
50{
51public:
52 /// \name ENUMS, EXCEPTIONS, and TYPEDEFS
53 //@{
54 /// \brief Exception thrown when division by 0 is encountered
55 class DivideByZero : public Exception
56 {
57 public:
58 DivideByZero() : Exception(OTHER_ERROR, "Integer: division by zero") {}
59 };
60
61 /// \brief Exception thrown when a random number cannot be found that
62 /// satisfies the condition
64 {
65 public:
66 RandomNumberNotFound() : Exception(OTHER_ERROR, "Integer: no integer satisfies the given parameters") {}
67 };
68
69 /// \enum Sign
70 /// \brief Used internally to represent the integer
71 /// \details Sign is used internally to represent the integer. It is also used in a few API functions.
72 /// \sa SetPositive(), SetNegative(), Signedness
73 enum Sign {
74 /// \brief the value is positive or 0
75 POSITIVE=0,
76 /// \brief the value is negative
77 NEGATIVE=1};
78
79 /// \enum Signedness
80 /// \brief Used when importing and exporting integers
81 /// \details Signedness is usually used in API functions.
82 /// \sa Sign
84 /// \brief an unsigned value
86 /// \brief a signed value
87 SIGNED};
88
89 /// \enum RandomNumberType
90 /// \brief Properties of a random integer
92 /// \brief a number with no special properties
94 /// \brief a number which is probabilistically prime
95 PRIME};
96 //@}
97
98 /// \name CREATORS
99 //@{
100 /// \brief Creates the zero integer
102
103 /// copy constructor
104 Integer(const Integer& t);
105
106 /// \brief Convert from signed long
107 Integer(signed long value);
108
109 /// \brief Convert from lword
110 /// \param sign enumeration indicating Sign
111 /// \param value the long word
112 Integer(Sign sign, lword value);
113
114 /// \brief Convert from two words
115 /// \param sign enumeration indicating Sign
116 /// \param highWord the high word
117 /// \param lowWord the low word
118 Integer(Sign sign, word highWord, word lowWord);
119
120 /// \brief Convert from a C-string
121 /// \param str C-string value
122 /// \param order the ByteOrder of the string to be processed
123 /// \details \p str can be in base 8, 10, or 16. Base is determined
124 /// by a case insensitive suffix of 'o' (8), '.' (10), or 'h' (16).
125 /// No suffix means base 10.
126 /// \details Byte order was added at Crypto++ 5.7 to allow use of little-endian
127 /// integers with curve25519, Poly1305 and Microsoft CAPI.
128 explicit Integer(const char *str, ByteOrder order = BIG_ENDIAN_ORDER);
129
130 /// \brief Convert from a wide C-string
131 /// \param str wide C-string value
132 /// \param order the ByteOrder of the string to be processed
133 /// \details \p str can be in base 8, 10, or 16. Base is determined
134 /// by a case insensitive suffix of 'o' (8), '.' (10), or 'h' (16).
135 /// No suffix means base 10.
136 /// \details Byte order was added at Crypto++ 5.7 to allow use of little-endian
137 /// integers with curve25519, Poly1305 and Microsoft CAPI.
138 explicit Integer(const wchar_t *str, ByteOrder order = BIG_ENDIAN_ORDER);
139
140 /// \brief Convert from a big-endian byte array
141 /// \param encodedInteger big-endian byte array
142 /// \param byteCount length of the byte array
143 /// \param sign enumeration indicating Signedness
144 /// \param order the ByteOrder of the array to be processed
145 /// \details Byte order was added at Crypto++ 5.7 to allow use of little-endian
146 /// integers with curve25519, Poly1305 and Microsoft CAPI.
147 Integer(const byte *encodedInteger, size_t byteCount, Signedness sign=UNSIGNED, ByteOrder order = BIG_ENDIAN_ORDER);
148
149 /// \brief Convert from a big-endian array
150 /// \param bt BufferedTransformation object with big-endian byte array
151 /// \param byteCount length of the byte array
152 /// \param sign enumeration indicating Signedness
153 /// \param order the ByteOrder of the data to be processed
154 /// \details Byte order was added at Crypto++ 5.7 to allow use of little-endian
155 /// integers with curve25519, Poly1305 and Microsoft CAPI.
156 Integer(BufferedTransformation &bt, size_t byteCount, Signedness sign=UNSIGNED, ByteOrder order = BIG_ENDIAN_ORDER);
157
158 /// \brief Convert from a BER encoded byte array
159 /// \param bt BufferedTransformation object with BER encoded byte array
161
162 /// \brief Create a random integer
163 /// \param rng RandomNumberGenerator used to generate material
164 /// \param bitCount the number of bits in the resulting integer
165 /// \details The random integer created is uniformly distributed over <tt>[0, 2<sup>bitCount</sup>]</tt>.
166 Integer(RandomNumberGenerator &rng, size_t bitCount);
167
168 /// \brief Integer representing 0
169 /// \return an Integer representing 0
170 /// \details Zero() avoids calling constructors for frequently used integers
171 static const Integer & CRYPTOPP_API Zero();
172 /// \brief Integer representing 1
173 /// \return an Integer representing 1
174 /// \details One() avoids calling constructors for frequently used integers
175 static const Integer & CRYPTOPP_API One();
176 /// \brief Integer representing 2
177 /// \return an Integer representing 2
178 /// \details Two() avoids calling constructors for frequently used integers
179 static const Integer & CRYPTOPP_API Two();
180
181 /// \brief Create a random integer of special form
182 /// \param rng RandomNumberGenerator used to generate material
183 /// \param min the minimum value
184 /// \param max the maximum value
185 /// \param rnType RandomNumberType to specify the type
186 /// \param equiv the equivalence class based on the parameter \p mod
187 /// \param mod the modulus used to reduce the equivalence class
188 /// \throw RandomNumberNotFound if the set is empty.
189 /// \details Ideally, the random integer created should be uniformly distributed
190 /// over <tt>{x | min <= x <= max</tt> and \p x is of rnType and <tt>x \% mod == equiv}</tt>.
191 /// However the actual distribution may not be uniform because sequential
192 /// search is used to find an appropriate number from a random starting
193 /// point.
194 /// \details May return (with very small probability) a pseudoprime when a prime
195 /// is requested and <tt>max > lastSmallPrime*lastSmallPrime</tt>. \p lastSmallPrime
196 /// is declared in nbtheory.h.
197 Integer(RandomNumberGenerator &rng, const Integer &min, const Integer &max, RandomNumberType rnType=ANY, const Integer &equiv=Zero(), const Integer &mod=One());
198
199 /// \brief Exponentiates to a power of 2
200 /// \return the Integer 2<sup>e</sup>
201 /// \sa a_times_b_mod_c() and a_exp_b_mod_c()
202 static Integer CRYPTOPP_API Power2(size_t e);
203 //@}
204
205 /// \name ENCODE/DECODE
206 //@{
207 /// \brief Minimum number of bytes to encode this integer
208 /// \param sign enumeration indicating Signedness
209 /// \note The MinEncodedSize() of 0 is 1.
210 size_t MinEncodedSize(Signedness sign=UNSIGNED) const;
211
212 /// \brief Encode in big-endian format
213 /// \param output big-endian byte array
214 /// \param outputLen length of the byte array
215 /// \param sign enumeration indicating Signedness
216 /// \details Unsigned means encode absolute value, signed means encode two's complement if negative.
217 /// \details outputLen can be used to ensure an Integer is encoded to an exact size (rather than a
218 /// minimum size). An exact size is useful, for example, when encoding to a field element size.
219 void Encode(byte *output, size_t outputLen, Signedness sign=UNSIGNED) const;
220
221 /// \brief Encode in big-endian format
222 /// \param bt BufferedTransformation object
223 /// \param outputLen length of the encoding
224 /// \param sign enumeration indicating Signedness
225 /// \details Unsigned means encode absolute value, signed means encode two's complement if negative.
226 /// \details outputLen can be used to ensure an Integer is encoded to an exact size (rather than a
227 /// minimum size). An exact size is useful, for example, when encoding to a field element size.
228 void Encode(BufferedTransformation &bt, size_t outputLen, Signedness sign=UNSIGNED) const;
229
230 /// \brief Encode in DER format
231 /// \param bt BufferedTransformation object
232 /// \details Encodes the Integer using Distinguished Encoding Rules
233 /// The result is placed into a BufferedTransformation object
235
236 /// \brief Encode absolute value as big-endian octet string
237 /// \param bt BufferedTransformation object
238 /// \param length the number of mytes to decode
239 void DEREncodeAsOctetString(BufferedTransformation &bt, size_t length) const;
240
241 /// \brief Encode absolute value in OpenPGP format
242 /// \param output big-endian byte array
243 /// \param bufferSize length of the byte array
244 /// \return length of the output
245 /// \details OpenPGPEncode places result into the buffer and returns the
246 /// number of bytes used for the encoding
247 size_t OpenPGPEncode(byte *output, size_t bufferSize) const;
248
249 /// \brief Encode absolute value in OpenPGP format
250 /// \param bt BufferedTransformation object
251 /// \return length of the output
252 /// \details OpenPGPEncode places result into a BufferedTransformation object and returns the
253 /// number of bytes used for the encoding
255
256 /// \brief Decode from big-endian byte array
257 /// \param input big-endian byte array
258 /// \param inputLen length of the byte array
259 /// \param sign enumeration indicating Signedness
260 void Decode(const byte *input, size_t inputLen, Signedness sign=UNSIGNED);
261
262 /// \brief Decode nonnegative value from big-endian byte array
263 /// \param bt BufferedTransformation object
264 /// \param inputLen length of the byte array
265 /// \param sign enumeration indicating Signedness
266 /// \note <tt>bt.MaxRetrievable() >= inputLen</tt>.
267 void Decode(BufferedTransformation &bt, size_t inputLen, Signedness sign=UNSIGNED);
268
269 /// \brief Decode from BER format
270 /// \param input big-endian byte array
271 /// \param inputLen length of the byte array
272 void BERDecode(const byte *input, size_t inputLen);
273
274 /// \brief Decode from BER format
275 /// \param bt BufferedTransformation object
277
278 /// \brief Decode nonnegative value from big-endian octet string
279 /// \param bt BufferedTransformation object
280 /// \param length length of the byte array
282
283 /// \brief Exception thrown when an error is encountered decoding an OpenPGP integer
285 {
286 public:
287 OpenPGPDecodeErr() : Exception(INVALID_DATA_FORMAT, "OpenPGP decode error") {}
288 };
289
290 /// \brief Decode from OpenPGP format
291 /// \param input big-endian byte array
292 /// \param inputLen length of the byte array
293 void OpenPGPDecode(const byte *input, size_t inputLen);
294 /// \brief Decode from OpenPGP format
295 /// \param bt BufferedTransformation object
297 //@}
298
299 /// \name ACCESSORS
300 //@{
301 /// \brief Determines if the Integer is convertable to Long
302 /// \return true if <tt>*this</tt> can be represented as a signed long
303 /// \sa ConvertToLong()
305 /// \brief Convert the Integer to Long
306 /// \return equivalent signed long if possible, otherwise undefined
307 /// \sa IsConvertableToLong()
308 signed long ConvertToLong() const;
309
310 /// \brief Determines the number of bits required to represent the Integer
311 /// \return number of significant bits
312 /// \details BitCount is calculated as <tt>floor(log2(abs(*this))) + 1</tt>.
313 unsigned int BitCount() const;
314 /// \brief Determines the number of bytes required to represent the Integer
315 /// \return number of significant bytes
316 /// \details ByteCount is calculated as <tt>ceiling(BitCount()/8)</tt>.
317 unsigned int ByteCount() const;
318 /// \brief Determines the number of words required to represent the Integer
319 /// \return number of significant words
320 /// \details WordCount is calculated as <tt>ceiling(ByteCount()/sizeof(word))</tt>.
321 unsigned int WordCount() const;
322
323 /// \brief Provides the i-th bit of the Integer
324 /// \return the i-th bit, i=0 being the least significant bit
325 bool GetBit(size_t i) const;
326 /// \brief Provides the i-th byte of the Integer
327 /// \return the i-th byte
328 byte GetByte(size_t i) const;
329 /// \brief Provides the low order bits of the Integer
330 /// \return n lowest bits of <tt>*this >> i</tt>
331 lword GetBits(size_t i, size_t n) const;
332
333 /// \brief Determines if the Integer is 0
334 /// \return true if the Integer is 0, false otherwise
335 bool IsZero() const {return !*this;}
336 /// \brief Determines if the Integer is non-0
337 /// \return true if the Integer is non-0, false otherwise
338 bool NotZero() const {return !IsZero();}
339 /// \brief Determines if the Integer is negative
340 /// \return true if the Integer is negative, false otherwise
341 bool IsNegative() const {return sign == NEGATIVE;}
342 /// \brief Determines if the Integer is non-negative
343 /// \return true if the Integer is non-negative, false otherwise
344 bool NotNegative() const {return !IsNegative();}
345 /// \brief Determines if the Integer is positive
346 /// \return true if the Integer is positive, false otherwise
347 bool IsPositive() const {return NotNegative() && NotZero();}
348 /// \brief Determines if the Integer is non-positive
349 /// \return true if the Integer is non-positive, false otherwise
350 bool NotPositive() const {return !IsPositive();}
351 /// \brief Determines if the Integer is even parity
352 /// \return true if the Integer is even, false otherwise
353 bool IsEven() const {return GetBit(0) == 0;}
354 /// \brief Determines if the Integer is odd parity
355 /// \return true if the Integer is odd, false otherwise
356 bool IsOdd() const {return GetBit(0) == 1;}
357 //@}
358
359 /// \name MANIPULATORS
360 //@{
361 /// \brief Assignment
362 /// \param t the other Integer
363 /// \return the result of assignment
365 /// \brief Addition Assignment
366 /// \param t the other Integer
367 /// \return the result of <tt>*this + t</tt>
369 /// \brief Subtraction Assignment
370 /// \param t the other Integer
371 /// \return the result of <tt>*this - t</tt>
373 /// \brief Multiplication Assignment
374 /// \param t the other Integer
375 /// \return the result of <tt>*this * t</tt>
376 /// \sa a_times_b_mod_c() and a_exp_b_mod_c()
377 Integer& operator*=(const Integer& t) {return *this = Times(t);}
378 /// \brief Division Assignment
379 /// \param t the other Integer
380 /// \return the result of <tt>*this / t</tt>
381 Integer& operator/=(const Integer& t) {return *this = DividedBy(t);}
382 /// \brief Remainder Assignment
383 /// \param t the other Integer
384 /// \return the result of <tt>*this % t</tt>
385 /// \sa a_times_b_mod_c() and a_exp_b_mod_c()
386 Integer& operator%=(const Integer& t) {return *this = Modulo(t);}
387 /// \brief Division Assignment
388 /// \param t the other word
389 /// \return the result of <tt>*this / t</tt>
390 Integer& operator/=(word t) {return *this = DividedBy(t);}
391 /// \brief Remainder Assignment
392 /// \param t the other word
393 /// \return the result of <tt>*this % t</tt>
394 /// \sa a_times_b_mod_c() and a_exp_b_mod_c()
395 Integer& operator%=(word t) {return *this = Integer(POSITIVE, 0, Modulo(t));}
396
397 /// \brief Left-shift Assignment
398 /// \param n number of bits to shift
399 /// \return reference to this Integer
401 /// \brief Right-shift Assignment
402 /// \param n number of bits to shift
403 /// \return reference to this Integer
405
406 /// \brief Bitwise AND Assignment
407 /// \param t the other Integer
408 /// \return the result of <tt>*this & t</tt>
409 /// \details operator&=() performs a bitwise AND on <tt>*this</tt>. Missing bits are truncated
410 /// at the most significant bit positions, so the result is as small as the
411 /// smaller of the operands.
412 /// \details Internally, Crypto++ uses a sign-magnitude representation. The library
413 /// does not attempt to interpret bits, and the result is always POSITIVE. If needed,
414 /// the integer should be converted to a 2's compliment representation before performing
415 /// the operation.
416 /// \since Crypto++ 6.0
418 /// \brief Bitwise OR Assignment
419 /// \param t the second Integer
420 /// \return the result of <tt>*this | t</tt>
421 /// \details operator|=() performs a bitwise OR on <tt>*this</tt>. Missing bits are shifted in
422 /// at the most significant bit positions, so the result is as large as the
423 /// larger of the operands.
424 /// \details Internally, Crypto++ uses a sign-magnitude representation. The library
425 /// does not attempt to interpret bits, and the result is always POSITIVE. If needed,
426 /// the integer should be converted to a 2's compliment representation before performing
427 /// the operation.
428 /// \since Crypto++ 6.0
430 /// \brief Bitwise XOR Assignment
431 /// \param t the other Integer
432 /// \return the result of <tt>*this ^ t</tt>
433 /// \details operator^=() performs a bitwise XOR on <tt>*this</tt>. Missing bits are shifted
434 /// in at the most significant bit positions, so the result is as large as the
435 /// larger of the operands.
436 /// \details Internally, Crypto++ uses a sign-magnitude representation. The library
437 /// does not attempt to interpret bits, and the result is always POSITIVE. If needed,
438 /// the integer should be converted to a 2's compliment representation before performing
439 /// the operation.
440 /// \since Crypto++ 6.0
442
443 /// \brief Set this Integer to random integer
444 /// \param rng RandomNumberGenerator used to generate material
445 /// \param bitCount the number of bits in the resulting integer
446 /// \details The random integer created is uniformly distributed over <tt>[0, 2<sup>bitCount</sup>]</tt>.
447 void Randomize(RandomNumberGenerator &rng, size_t bitCount);
448
449 /// \brief Set this Integer to random integer
450 /// \param rng RandomNumberGenerator used to generate material
451 /// \param min the minimum value
452 /// \param max the maximum value
453 /// \details The random integer created is uniformly distributed over <tt>[min, max]</tt>.
454 void Randomize(RandomNumberGenerator &rng, const Integer &min, const Integer &max);
455
456 /// \brief Set this Integer to random integer of special form
457 /// \param rng RandomNumberGenerator used to generate material
458 /// \param min the minimum value
459 /// \param max the maximum value
460 /// \param rnType RandomNumberType to specify the type
461 /// \param equiv the equivalence class based on the parameter \p mod
462 /// \param mod the modulus used to reduce the equivalence class
463 /// \throw RandomNumberNotFound if the set is empty.
464 /// \details Ideally, the random integer created should be uniformly distributed
465 /// over <tt>{x | min <= x <= max</tt> and \p x is of rnType and <tt>x \% mod == equiv}</tt>.
466 /// However the actual distribution may not be uniform because sequential
467 /// search is used to find an appropriate number from a random starting
468 /// point.
469 /// \details May return (with very small probability) a pseudoprime when a prime
470 /// is requested and <tt>max > lastSmallPrime*lastSmallPrime</tt>. \p lastSmallPrime
471 /// is declared in nbtheory.h.
472 bool Randomize(RandomNumberGenerator &rng, const Integer &min, const Integer &max, RandomNumberType rnType, const Integer &equiv=Zero(), const Integer &mod=One());
473
474 /// \brief Generate a random number
475 /// \param rng RandomNumberGenerator used to generate material
476 /// \param params additional parameters that cannot be passed directly to the function
477 /// \return true if a random number was generated, false otherwise
478 /// \details GenerateRandomNoThrow attempts to generate a random number according to the
479 /// parameters specified in params. The function does not throw RandomNumberNotFound.
480 /// \details The example below generates a prime number using NameValuePairs that Integer
481 /// class recognizes. The names are not provided in argnames.h.
482 /// <pre>
483 /// AutoSeededRandomPool prng;
484 /// AlgorithmParameters params = MakeParameters("BitLength", 2048)
485 /// ("RandomNumberType", Integer::PRIME);
486 /// Integer x;
487 /// if (x.GenerateRandomNoThrow(prng, params) == false)
488 /// throw std::runtime_error("Failed to generate prime number");
489 /// </pre>
491
492 /// \brief Generate a random number
493 /// \param rng RandomNumberGenerator used to generate material
494 /// \param params additional parameters that cannot be passed directly to the function
495 /// \throw RandomNumberNotFound if a random number is not found
496 /// \details GenerateRandom attempts to generate a random number according to the
497 /// parameters specified in params.
498 /// \details The example below generates a prime number using NameValuePairs that Integer
499 /// class recognizes. The names are not provided in argnames.h.
500 /// <pre>
501 /// AutoSeededRandomPool prng;
502 /// AlgorithmParameters params = MakeParameters("BitLength", 2048)
503 /// ("RandomNumberType", Integer::PRIME);
504 /// Integer x;
505 /// try { x.GenerateRandom(prng, params); }
506 /// catch (RandomNumberNotFound&) { x = -1; }
507 /// </pre>
509 {
510 if (!GenerateRandomNoThrow(rng, params))
511 throw RandomNumberNotFound();
512 }
513
514 /// \brief Set the n-th bit to value
515 /// \details 0-based numbering.
516 void SetBit(size_t n, bool value=1);
517
518 /// \brief Set the n-th byte to value
519 /// \details 0-based numbering.
520 void SetByte(size_t n, byte value);
521
522 /// \brief Reverse the Sign of the Integer
523 void Negate();
524
525 /// \brief Sets the Integer to positive
526 void SetPositive() {sign = POSITIVE;}
527
528 /// \brief Sets the Integer to negative
529 void SetNegative() {if (!!(*this)) sign = NEGATIVE;}
530
531 /// \brief Swaps this Integer with another Integer
532 void swap(Integer &a);
533 //@}
534
535 /// \name UNARY OPERATORS
536 //@{
537 /// \brief Negation
538 bool operator!() const;
539 /// \brief Addition
540 Integer operator+() const {return *this;}
541 /// \brief Subtraction
543 /// \brief Pre-increment
545 /// \brief Pre-decrement
547 /// \brief Post-increment
548 Integer operator++(int) {Integer temp = *this; ++*this; return temp;}
549 /// \brief Post-decrement
550 Integer operator--(int) {Integer temp = *this; --*this; return temp;}
551 //@}
552
553 /// \name BINARY OPERATORS
554 //@{
555 /// \brief Perform signed comparison
556 /// \param a the Integer to compare
557 /// \retval -1 if <tt>*this < a</tt>
558 /// \retval 0 if <tt>*this = a</tt>
559 /// \retval 1 if <tt>*this > a</tt>
560 int Compare(const Integer& a) const;
561
562 /// \brief Addition
563 Integer Plus(const Integer &b) const;
564 /// \brief Subtraction
565 Integer Minus(const Integer &b) const;
566 /// \brief Multiplication
567 /// \sa a_times_b_mod_c() and a_exp_b_mod_c()
568 Integer Times(const Integer &b) const;
569 /// \brief Division
570 Integer DividedBy(const Integer &b) const;
571 /// \brief Remainder
572 /// \sa a_times_b_mod_c() and a_exp_b_mod_c()
573 Integer Modulo(const Integer &b) const;
574 /// \brief Division
576 /// \brief Remainder
577 /// \sa a_times_b_mod_c() and a_exp_b_mod_c()
578 word Modulo(word b) const;
579
580 /// \brief Bitwise AND
581 /// \param t the other Integer
582 /// \return the result of <tt>*this & t</tt>
583 /// \details And() performs a bitwise AND on the operands. Missing bits are truncated
584 /// at the most significant bit positions, so the result is as small as the
585 /// smaller of the operands.
586 /// \details Internally, Crypto++ uses a sign-magnitude representation. The library
587 /// does not attempt to interpret bits, and the result is always POSITIVE. If needed,
588 /// the integer should be converted to a 2's compliment representation before performing
589 /// the operation.
590 /// \since Crypto++ 6.0
591 Integer And(const Integer& t) const;
592
593 /// \brief Bitwise OR
594 /// \param t the other Integer
595 /// \return the result of <tt>*this | t</tt>
596 /// \details Or() performs a bitwise OR on the operands. Missing bits are shifted in
597 /// at the most significant bit positions, so the result is as large as the
598 /// larger of the operands.
599 /// \details Internally, Crypto++ uses a sign-magnitude representation. The library
600 /// does not attempt to interpret bits, and the result is always POSITIVE. If needed,
601 /// the integer should be converted to a 2's compliment representation before performing
602 /// the operation.
603 /// \since Crypto++ 6.0
604 Integer Or(const Integer& t) const;
605
606 /// \brief Bitwise XOR
607 /// \param t the other Integer
608 /// \return the result of <tt>*this ^ t</tt>
609 /// \details Xor() performs a bitwise XOR on the operands. Missing bits are shifted in
610 /// at the most significant bit positions, so the result is as large as the
611 /// larger of the operands.
612 /// \details Internally, Crypto++ uses a sign-magnitude representation. The library
613 /// does not attempt to interpret bits, and the result is always POSITIVE. If needed,
614 /// the integer should be converted to a 2's compliment representation before performing
615 /// the operation.
616 /// \since Crypto++ 6.0
617 Integer Xor(const Integer& t) const;
618
619 /// \brief Right-shift
620 Integer operator>>(size_t n) const {return Integer(*this)>>=n;}
621 /// \brief Left-shift
622 Integer operator<<(size_t n) const {return Integer(*this)<<=n;}
623 //@}
624
625 /// \name OTHER ARITHMETIC FUNCTIONS
626 //@{
627 /// \brief Retrieve the absolute value of this integer
629 /// \brief Add this integer to itself
630 Integer Doubled() const {return Plus(*this);}
631 /// \brief Multiply this integer by itself
632 /// \sa a_times_b_mod_c() and a_exp_b_mod_c()
633 Integer Squared() const {return Times(*this);}
634 /// \brief Extract square root
635 /// \details if negative return 0, else return floor of square root
637 /// \brief Determine whether this integer is a perfect square
638 bool IsSquare() const;
639
640 /// \brief Determine if 1 or -1
641 /// \return true if this integer is 1 or -1, false otherwise
642 bool IsUnit() const;
643 /// \brief Calculate multiplicative inverse
644 /// \return MultiplicativeInverse inverse if 1 or -1, otherwise return 0.
646
647 /// \brief Extended Division
648 /// \param r a reference for the remainder
649 /// \param q a reference for the quotient
650 /// \param a reference to the dividend
651 /// \param d reference to the divisor
652 /// \details Divide calculates r and q such that (a == d*q + r) && (0 <= r < abs(d)).
653 static void CRYPTOPP_API Divide(Integer &r, Integer &q, const Integer &a, const Integer &d);
654
655 /// \brief Extended Division
656 /// \param r a reference for the remainder
657 /// \param q a reference for the quotient
658 /// \param a reference to the dividend
659 /// \param d reference to the divisor
660 /// \details Divide calculates r and q such that (a == d*q + r) && (0 <= r < abs(d)).
661 /// This overload uses a faster division algorithm because the divisor is short.
662 static void CRYPTOPP_API Divide(word &r, Integer &q, const Integer &a, word d);
663
664 /// \brief Extended Division
665 /// \param r a reference for the remainder
666 /// \param q a reference for the quotient
667 /// \param a reference to the dividend
668 /// \param n reference to the divisor
669 /// \details DivideByPowerOf2 calculates r and q such that (a == d*q + r) && (0 <= r < abs(d)).
670 /// It returns same result as Divide(r, q, a, Power2(n)), but faster.
671 /// This overload uses a faster division algorithm because the divisor is a power of 2.
672 static void CRYPTOPP_API DivideByPowerOf2(Integer &r, Integer &q, const Integer &a, unsigned int n);
673
674 /// \brief Calculate greatest common divisor
675 /// \param a reference to the first number
676 /// \param n reference to the secind number
677 /// \return the greatest common divisor <tt>a</tt> and <tt>n</tt>.
678 static Integer CRYPTOPP_API Gcd(const Integer &a, const Integer &n);
679
680 /// \brief Calculate multiplicative inverse
681 /// \param n reference to the modulus
682 /// \return an Integer <tt>*this % n</tt>.
683 /// \details InverseMod returns the multiplicative inverse of the Integer <tt>*this</tt>
684 /// modulo the Integer <tt>n</tt>. If no Integer exists then Integer 0 is returned.
685 /// \sa a_times_b_mod_c() and a_exp_b_mod_c()
686 Integer InverseMod(const Integer &n) const;
687
688 /// \brief Calculate multiplicative inverse
689 /// \param n the modulus
690 /// \return a word <tt>*this % n</tt>.
691 /// \details InverseMod returns the multiplicative inverse of the Integer <tt>*this</tt>
692 /// modulo the word <tt>n</tt>. If no Integer exists then word 0 is returned.
693 /// \sa a_times_b_mod_c() and a_exp_b_mod_c()
695 //@}
696
697 /// \name INPUT/OUTPUT
698 //@{
699 /// \brief Extraction operator
700 /// \param in reference to a std::istream
701 /// \param a reference to an Integer
702 /// \return reference to a std::istream reference
703 friend CRYPTOPP_DLL std::istream& CRYPTOPP_API operator>>(std::istream& in, Integer &a);
704
705 /// \brief Insertion operator
706 /// \param out reference to a std::ostream
707 /// \param a a constant reference to an Integer
708 /// \return reference to a std::ostream reference
709 /// \details The output integer responds to std::hex, std::oct, std::hex, std::upper and
710 /// std::lower. The output includes the suffix \a h (for hex), \a . (\a dot, for dec)
711 /// and \a o (for octal). There is currently no way to suppress the suffix.
712 /// \details If you want to print an Integer without the suffix or using an arbitrary base, then
713 /// use IntToString<Integer>().
714 /// \sa IntToString<Integer>
715 friend CRYPTOPP_DLL std::ostream& CRYPTOPP_API operator<<(std::ostream& out, const Integer &a);
716 //@}
717
718 /// \brief Modular multiplication
719 /// \param x reference to the first term
720 /// \param y reference to the second term
721 /// \param m reference to the modulus
722 /// \return an Integer <tt>(a * b) % m</tt>.
723 CRYPTOPP_DLL friend Integer CRYPTOPP_API a_times_b_mod_c(const Integer &x, const Integer& y, const Integer& m);
724 /// \brief Modular exponentiation
725 /// \param x reference to the base
726 /// \param e reference to the exponent
727 /// \param m reference to the modulus
728 /// \return an Integer <tt>(a ^ b) % m</tt>.
729 CRYPTOPP_DLL friend Integer CRYPTOPP_API a_exp_b_mod_c(const Integer &x, const Integer& e, const Integer& m);
730
731protected:
732
733 // http://github.com/weidai11/cryptopp/issues/602
734 Integer InverseModNext(const Integer &n) const;
735
736private:
737
738 Integer(word value, size_t length);
739 int PositiveCompare(const Integer &t) const;
740
741 IntegerSecBlock reg;
742 Sign sign;
743
744#ifndef CRYPTOPP_DOXYGEN_PROCESSING
745 friend class ModularArithmetic;
746 friend class MontgomeryRepresentation;
747 friend class HalfMontgomeryRepresentation;
748
749 friend void PositiveAdd(Integer &sum, const Integer &a, const Integer &b);
750 friend void PositiveSubtract(Integer &diff, const Integer &a, const Integer &b);
751 friend void PositiveMultiply(Integer &product, const Integer &a, const Integer &b);
752 friend void PositiveDivide(Integer &remainder, Integer &quotient, const Integer &dividend, const Integer &divisor);
753#endif
754};
755
756/// \brief Comparison
757inline bool operator==(const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)==0;}
758/// \brief Comparison
759inline bool operator!=(const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)!=0;}
760/// \brief Comparison
761inline bool operator> (const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)> 0;}
762/// \brief Comparison
763inline bool operator>=(const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)>=0;}
764/// \brief Comparison
765inline bool operator< (const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)< 0;}
766/// \brief Comparison
767inline bool operator<=(const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)<=0;}
768/// \brief Addition
769inline CryptoPP::Integer operator+(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Plus(b);}
770/// \brief Subtraction
771inline CryptoPP::Integer operator-(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Minus(b);}
772/// \brief Multiplication
773/// \sa a_times_b_mod_c() and a_exp_b_mod_c()
774inline CryptoPP::Integer operator*(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Times(b);}
775/// \brief Division
776inline CryptoPP::Integer operator/(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.DividedBy(b);}
777/// \brief Remainder
778/// \sa a_times_b_mod_c() and a_exp_b_mod_c()
779inline CryptoPP::Integer operator%(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Modulo(b);}
780/// \brief Division
781inline CryptoPP::Integer operator/(const CryptoPP::Integer &a, CryptoPP::word b) {return a.DividedBy(b);}
782/// \brief Remainder
783/// \sa a_times_b_mod_c() and a_exp_b_mod_c()
784inline CryptoPP::word operator%(const CryptoPP::Integer &a, CryptoPP::word b) {return a.Modulo(b);}
785
786/// \brief Bitwise AND
787/// \param a the first Integer
788/// \param b the second Integer
789/// \return the result of a & b
790/// \details operator&() performs a bitwise AND on the operands. Missing bits are truncated
791/// at the most significant bit positions, so the result is as small as the
792/// smaller of the operands.
793/// \details Internally, Crypto++ uses a sign-magnitude representation. The library
794/// does not attempt to interpret bits, and the result is always POSITIVE. If needed,
795/// the integer should be converted to a 2's compliment representation before performing
796/// the operation.
797/// \since Crypto++ 6.0
798inline CryptoPP::Integer operator&(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.And(b);}
799
800/// \brief Bitwise OR
801/// \param a the first Integer
802/// \param b the second Integer
803/// \return the result of a | b
804/// \details operator|() performs a bitwise OR on the operands. Missing bits are shifted in
805/// at the most significant bit positions, so the result is as large as the
806/// larger of the operands.
807/// \details Internally, Crypto++ uses a sign-magnitude representation. The library
808/// does not attempt to interpret bits, and the result is always POSITIVE. If needed,
809/// the integer should be converted to a 2's compliment representation before performing
810/// the operation.
811/// \since Crypto++ 6.0
812inline CryptoPP::Integer operator|(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Or(b);}
813
814/// \brief Bitwise XOR
815/// \param a the first Integer
816/// \param b the second Integer
817/// \return the result of a ^ b
818/// \details operator^() performs a bitwise XOR on the operands. Missing bits are shifted
819/// in at the most significant bit positions, so the result is as large as the
820/// larger of the operands.
821/// \details Internally, Crypto++ uses a sign-magnitude representation. The library
822/// does not attempt to interpret bits, and the result is always POSITIVE. If needed,
823/// the integer should be converted to a 2's compliment representation before performing
824/// the operation.
825/// \since Crypto++ 6.0
826inline CryptoPP::Integer operator^(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Xor(b);}
827
828NAMESPACE_END
829
830#ifndef __BORLANDC__
831NAMESPACE_BEGIN(std)
832inline void swap(CryptoPP::Integer &a, CryptoPP::Integer &b)
833{
834 a.swap(b);
835}
836NAMESPACE_END
837#endif
838
839#endif
Interface for encoding and decoding ASN1 objects.
Definition: cryptlib.h:3284
Interface for buffered transformations.
Definition: cryptlib.h:1652
Base class for all exceptions thrown by the library.
Definition: cryptlib.h:159
Exception thrown when division by 0 is encountered.
Definition: integer.h:56
Exception thrown when an error is encountered decoding an OpenPGP integer.
Definition: integer.h:285
Exception thrown when a random number cannot be found that satisfies the condition.
Definition: integer.h:64
Multiple precision integer with arithmetic operations.
Definition: integer.h:50
Integer operator--(int)
Post-decrement.
Definition: integer.h:550
static void Divide(Integer &r, Integer &q, const Integer &a, const Integer &d)
Extended Division.
void DEREncode(BufferedTransformation &bt) const
Encode in DER format.
Integer & operator>>=(size_t n)
Right-shift Assignment.
Integer & operator/=(const Integer &t)
Division Assignment.
Definition: integer.h:381
Integer & operator&=(const Integer &t)
Bitwise AND Assignment.
void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &params=g_nullNameValuePairs)
Generate a random number.
Definition: integer.h:508
bool GetBit(size_t i) const
Provides the i-th bit of the Integer.
void SetByte(size_t n, byte value)
Set the n-th byte to value.
static void DivideByPowerOf2(Integer &r, Integer &q, const Integer &a, unsigned int n)
Extended Division.
bool IsPositive() const
Determines if the Integer is positive.
Definition: integer.h:347
Integer operator++(int)
Post-increment.
Definition: integer.h:548
friend CRYPTOPP_DLL std::istream & operator>>(std::istream &in, Integer &a)
Extraction operator.
Integer(BufferedTransformation &bt, size_t byteCount, Signedness sign=UNSIGNED, ByteOrder order=BIG_ENDIAN_ORDER)
Convert from a big-endian array.
Integer Minus(const Integer &b) const
Subtraction.
Integer(const byte *encodedInteger, size_t byteCount, Signedness sign=UNSIGNED, ByteOrder order=BIG_ENDIAN_ORDER)
Convert from a big-endian byte array.
signed long ConvertToLong() const
Convert the Integer to Long.
Integer operator-() const
Subtraction.
void SetBit(size_t n, bool value=1)
Set the n-th bit to value.
word InverseMod(word n) const
Calculate multiplicative inverse.
Integer & operator+=(const Integer &t)
Addition Assignment.
Integer And(const Integer &t) const
Bitwise AND.
bool IsSquare() const
Determine whether this integer is a perfect square.
Integer Plus(const Integer &b) const
Addition.
Integer DividedBy(const Integer &b) const
Division.
Integer DividedBy(word b) const
Division.
Integer & operator++()
Pre-increment.
void DEREncodeAsOctetString(BufferedTransformation &bt, size_t length) const
Encode absolute value as big-endian octet string.
void OpenPGPDecode(const byte *input, size_t inputLen)
Decode from OpenPGP format.
Integer Doubled() const
Add this integer to itself.
Definition: integer.h:630
bool NotZero() const
Determines if the Integer is non-0.
Definition: integer.h:338
Integer Times(const Integer &b) const
Multiplication.
Integer operator>>(size_t n) const
Right-shift.
Definition: integer.h:620
void BERDecodeAsOctetString(BufferedTransformation &bt, size_t length)
Decode nonnegative value from big-endian octet string.
Integer & operator--()
Pre-decrement.
byte GetByte(size_t i) const
Provides the i-th byte of the Integer.
static const Integer & Zero()
Integer representing 0.
word Modulo(word b) const
Remainder.
void Randomize(RandomNumberGenerator &rng, size_t bitCount)
Set this Integer to random integer.
CRYPTOPP_DLL friend Integer a_times_b_mod_c(const Integer &x, const Integer &y, const Integer &m)
Modular multiplication.
Integer & operator%=(word t)
Remainder Assignment.
Definition: integer.h:395
bool IsConvertableToLong() const
Determines if the Integer is convertable to Long.
Integer(Sign sign, lword value)
Convert from lword.
void Encode(BufferedTransformation &bt, size_t outputLen, Signedness sign=UNSIGNED) const
Encode in big-endian format.
Integer Or(const Integer &t) const
Bitwise OR.
lword GetBits(size_t i, size_t n) const
Provides the low order bits of the Integer.
static Integer Power2(size_t e)
Exponentiates to a power of 2.
Integer Squared() const
Multiply this integer by itself.
Definition: integer.h:633
Integer()
Creates the zero integer.
void BERDecode(const byte *input, size_t inputLen)
Decode from BER format.
Integer(BufferedTransformation &bt)
Convert from a BER encoded byte array.
size_t MinEncodedSize(Signedness sign=UNSIGNED) const
Minimum number of bytes to encode this integer.
bool NotPositive() const
Determines if the Integer is non-positive.
Definition: integer.h:350
bool Randomize(RandomNumberGenerator &rng, const Integer &min, const Integer &max, RandomNumberType rnType, const Integer &equiv=Zero(), const Integer &mod=One())
Set this Integer to random integer of special form.
Integer & operator/=(word t)
Division Assignment.
Definition: integer.h:390
void SetNegative()
Sets the Integer to negative.
Definition: integer.h:529
unsigned int BitCount() const
Determines the number of bits required to represent the Integer.
Integer & operator|=(const Integer &t)
Bitwise OR Assignment.
void BERDecode(BufferedTransformation &bt)
Decode from BER format.
void Negate()
Reverse the Sign of the Integer.
bool NotNegative() const
Determines if the Integer is non-negative.
Definition: integer.h:344
Integer(RandomNumberGenerator &rng, const Integer &min, const Integer &max, RandomNumberType rnType=ANY, const Integer &equiv=Zero(), const Integer &mod=One())
Create a random integer of special form.
void SetPositive()
Sets the Integer to positive.
Definition: integer.h:526
unsigned int WordCount() const
Determines the number of words required to represent the Integer.
CRYPTOPP_DLL friend Integer a_exp_b_mod_c(const Integer &x, const Integer &e, const Integer &m)
Modular exponentiation.
Integer & operator^=(const Integer &t)
Bitwise XOR Assignment.
Integer operator+() const
Addition.
Definition: integer.h:540
Integer & operator=(const Integer &t)
Assignment.
Integer & operator-=(const Integer &t)
Subtraction Assignment.
RandomNumberType
Properties of a random integer.
Definition: integer.h:91
@ ANY
a number with no special properties
Definition: integer.h:93
bool operator!() const
Negation.
Integer(const Integer &t)
copy constructor
Integer AbsoluteValue() const
Retrieve the absolute value of this integer.
void OpenPGPDecode(BufferedTransformation &bt)
Decode from OpenPGP format.
Integer & operator*=(const Integer &t)
Multiplication Assignment.
Definition: integer.h:377
Integer(const char *str, ByteOrder order=BIG_ENDIAN_ORDER)
Convert from a C-string.
Signedness
Used when importing and exporting integers.
Definition: integer.h:83
@ UNSIGNED
an unsigned value
Definition: integer.h:85
Integer Xor(const Integer &t) const
Bitwise XOR.
Integer(Sign sign, word highWord, word lowWord)
Convert from two words.
void Randomize(RandomNumberGenerator &rng, const Integer &min, const Integer &max)
Set this Integer to random integer.
Integer operator<<(size_t n) const
Left-shift.
Definition: integer.h:622
int Compare(const Integer &a) const
Perform signed comparison.
Integer Modulo(const Integer &b) const
Remainder.
Integer(signed long value)
Convert from signed long.
size_t OpenPGPEncode(BufferedTransformation &bt) const
Encode absolute value in OpenPGP format.
size_t OpenPGPEncode(byte *output, size_t bufferSize) const
Encode absolute value in OpenPGP format.
void swap(Integer &a)
Swaps this Integer with another Integer.
static const Integer & Two()
Integer representing 2.
Integer & operator%=(const Integer &t)
Remainder Assignment.
Definition: integer.h:386
bool IsZero() const
Determines if the Integer is 0.
Definition: integer.h:335
Integer MultiplicativeInverse() const
Calculate multiplicative inverse.
bool GenerateRandomNoThrow(RandomNumberGenerator &rng, const NameValuePairs &params=g_nullNameValuePairs)
Generate a random number.
bool IsNegative() const
Determines if the Integer is negative.
Definition: integer.h:341
void Decode(const byte *input, size_t inputLen, Signedness sign=UNSIGNED)
Decode from big-endian byte array.
Integer & operator<<=(size_t n)
Left-shift Assignment.
Sign
Used internally to represent the integer.
Definition: integer.h:73
Integer(const wchar_t *str, ByteOrder order=BIG_ENDIAN_ORDER)
Convert from a wide C-string.
unsigned int ByteCount() const
Determines the number of bytes required to represent the Integer.
void Decode(BufferedTransformation &bt, size_t inputLen, Signedness sign=UNSIGNED)
Decode nonnegative value from big-endian byte array.
bool IsUnit() const
Determine if 1 or -1.
Integer(RandomNumberGenerator &rng, size_t bitCount)
Create a random integer.
bool IsOdd() const
Determines if the Integer is odd parity.
Definition: integer.h:356
static void Divide(word &r, Integer &q, const Integer &a, word d)
Extended Division.
friend CRYPTOPP_DLL std::ostream & operator<<(std::ostream &out, const Integer &a)
Insertion operator.
static Integer Gcd(const Integer &a, const Integer &n)
Calculate greatest common divisor.
void Encode(byte *output, size_t outputLen, Signedness sign=UNSIGNED) const
Encode in big-endian format.
Integer InverseMod(const Integer &n) const
Calculate multiplicative inverse.
Integer SquareRoot() const
Extract square root.
static const Integer & One()
Integer representing 1.
bool IsEven() const
Determines if the Integer is even parity.
Definition: integer.h:353
Ring of congruence classes modulo n.
Definition: modarith.h:44
Performs modular arithmetic in Montgomery representation for increased speed.
Definition: modarith.h:296
Interface for retrieving values given their names.
Definition: cryptlib.h:322
Interface for random number generators.
Definition: cryptlib.h:1435
Secure memory block with allocator and cleanup.
Definition: secblock.h:731
#define CRYPTOPP_API
Win32 calling convention.
Definition: config_dll.h:119
word64 word
Full word used for multiprecision integer arithmetic.
Definition: config_int.h:182
word64 lword
Large word type.
Definition: config_int.h:158
Abstract base classes that provide a uniform interface to this library.
const NameValuePairs & g_nullNameValuePairs
An empty set of name-value pairs.
Definition: cryptlib.h:529
ByteOrder
Provides the byte ordering.
Definition: cryptlib.h:143
@ BIG_ENDIAN_ORDER
byte order is big-endian
Definition: cryptlib.h:147
inline ::Integer operator&(const ::Integer &a, const ::Integer &b)
Bitwise AND.
Definition: integer.h:798
inline ::Integer operator%(const ::Integer &a, const ::Integer &b)
Remainder.
Definition: integer.h:779
bool operator<(const ::Integer &a, const ::Integer &b)
Comparison.
Definition: integer.h:765
inline ::Integer operator-(const ::Integer &a, const ::Integer &b)
Subtraction.
Definition: integer.h:771
inline ::Integer operator^(const ::Integer &a, const ::Integer &b)
Bitwise XOR.
Definition: integer.h:826
inline ::Integer operator|(const ::Integer &a, const ::Integer &b)
Bitwise OR.
Definition: integer.h:812
bool operator>=(const ::Integer &a, const ::Integer &b)
Comparison.
Definition: integer.h:763
inline ::Integer operator*(const ::Integer &a, const ::Integer &b)
Multiplication.
Definition: integer.h:774
bool operator<=(const ::Integer &a, const ::Integer &b)
Comparison.
Definition: integer.h:767
inline ::Integer operator/(const ::Integer &a, const ::Integer &b)
Division.
Definition: integer.h:776
bool operator==(const ::Integer &a, const ::Integer &b)
Comparison.
Definition: integer.h:757
bool operator>(const ::Integer &a, const ::Integer &b)
Comparison.
Definition: integer.h:761
bool operator!=(const ::Integer &a, const ::Integer &b)
Comparison.
Definition: integer.h:759
inline ::Integer operator+(const ::Integer &a, const ::Integer &b)
Addition.
Definition: integer.h:769
Crypto++ library namespace.
Classes and functions for secure memory allocations.
void swap(::SecBlock< T, A > &a, ::SecBlock< T, A > &b)
Swap two SecBlocks.
Definition: secblock.h:1289
Common C++ header files.
Performs static initialization of the Integer class.
Definition: integer.h:30