Crypto++ 8.7
Free C++ class library of cryptographic schemes
gf2n_simd.cpp
1// gf2n_simd.cpp - written and placed in the public domain by Jeffrey Walton
2// Also based on PCLMULQDQ code by Jankowski, Laurent and
3// O'Mahony from Intel (see reference below).
4//
5// This source file uses intrinsics and built-ins to gain access to
6// CLMUL, ARMv8a, and Power8 instructions. A separate source file is
7// needed because additional CXXFLAGS are required to enable the
8// appropriate instructions sets in some build configurations.
9//
10// Several speedups were taken from Intel Polynomial Multiplication
11// Instruction and its Usage for Elliptic Curve Cryptography, by
12// Krzysztof Jankowski, Pierre Laurent and Aidan O'Mahony,
13// https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/polynomial-multiplication-instructions-paper.pdf
14// There may be more speedups available, see https://eprint.iacr.org/2011/589.pdf.
15// The IACR paper performs some optimizations that the compiler is
16// expected to perform, like Common Subexpression Elimination to save
17// on variables (among others). Note that the compiler may miss the
18// optimization so the IACR paper is useful. However, the code is GPL3
19// and toxic for some users of the library, so it is not used here...
20
21#include "pch.h"
22#include "config.h"
23
24#ifndef CRYPTOPP_IMPORTS
25
26#include "gf2n.h"
27
28#if (CRYPTOPP_CLMUL_AVAILABLE)
29# include <emmintrin.h>
30# include <wmmintrin.h>
31#endif
32
33#if (CRYPTOPP_ARM_PMULL_AVAILABLE)
34# include "arm_simd.h"
35#endif
36
37#if defined(CRYPTOPP_ALTIVEC_AVAILABLE)
38# include "ppc_simd.h"
39#endif
40
41// Squash MS LNK4221 and libtool warnings
42extern const char GF2N_SIMD_FNAME[] = __FILE__;
43
44ANONYMOUS_NAMESPACE_BEGIN
45
46// ************************** ARMv8 ************************** //
47
48using CryptoPP::word;
49
50#if (CRYPTOPP_ARM_PMULL_AVAILABLE)
51
52// c1c0 = a * b
53inline void
54F2N_Multiply_128x128_ARMv8(uint64x2_t& c1, uint64x2_t& c0, const uint64x2_t& a, const uint64x2_t& b)
55{
56 uint64x2_t t1, t2, z0={0};
57
58 c0 = PMULL_00(a, b);
59 c1 = PMULL_11(a, b);
60 t1 = vmovq_n_u64(vgetq_lane_u64(a, 1));
61 t1 = veorq_u64(a, t1);
62 t2 = vmovq_n_u64(vgetq_lane_u64(b, 1));
63 t2 = veorq_u64(b, t2);
64 t1 = PMULL_00(t1, t2);
65 t1 = veorq_u64(c0, t1);
66 t1 = veorq_u64(c1, t1);
67 t2 = t1;
68 t1 = vextq_u64(z0, t1, 1);
69 t2 = vextq_u64(t2, z0, 1);
70 c0 = veorq_u64(c0, t1);
71 c1 = veorq_u64(c1, t2);
72}
73
74// c3c2c1c0 = a1a0 * b1b0
75inline void
76F2N_Multiply_256x256_ARMv8(uint64x2_t& c3, uint64x2_t& c2, uint64x2_t& c1, uint64x2_t& c0,
77 const uint64x2_t& b1, const uint64x2_t& b0, const uint64x2_t& a1, const uint64x2_t& a0)
78{
79 uint64x2_t c4, c5;
80 uint64x2_t x0=a0, x1=a1, y0=b0, y1=b1;
81
82 F2N_Multiply_128x128_ARMv8(c1, c0, x0, y0);
83 F2N_Multiply_128x128_ARMv8(c3, c2, x1, y1);
84
85 x0 = veorq_u64(x0, x1);
86 y0 = veorq_u64(y0, y1);
87
88 F2N_Multiply_128x128_ARMv8(c5, c4, x0, y0);
89
90 c4 = veorq_u64(c4, c0);
91 c4 = veorq_u64(c4, c2);
92 c5 = veorq_u64(c5, c1);
93 c5 = veorq_u64(c5, c3);
94 c1 = veorq_u64(c1, c4);
95 c2 = veorq_u64(c2, c5);
96}
97
98// c3c2c1c0 = a1a0 * a1a0
99inline void
100F2N_Square_256_ARMv8(uint64x2_t& c3, uint64x2_t& c2, uint64x2_t& c1,
101 uint64x2_t& c0, const uint64x2_t& a1, const uint64x2_t& a0)
102{
103 c0 = PMULL_00(a0, a0);
104 c1 = PMULL_11(a0, a0);
105 c2 = PMULL_00(a1, a1);
106 c3 = PMULL_11(a1, a1);
107}
108
109// x = (x << n), z = 0
110template <unsigned int N>
111inline uint64x2_t ShiftLeft128_ARMv8(uint64x2_t x)
112{
113 uint64x2_t u=x, v, z={0};
114 x = vshlq_n_u64(x, N);
115 u = vshrq_n_u64(u, (64-N));
116 v = vcombine_u64(vget_low_u64(z), vget_low_u64(u));
117 x = vorrq_u64(x, v);
118 return x;
119}
120
121// c1c0 = c3c2c1c0 MOD p. This is a Barrett reduction. Reading at
122// Intel paper or https://github.com/antonblanchard/crc32-vpmsum.
123inline void
124GF2NT_233_Reduce_ARMv8(uint64x2_t& c3, uint64x2_t& c2, uint64x2_t& c1, uint64x2_t& c0)
125{
126 const unsigned int mask[4] = {
127 0xffffffff, 0xffffffff, 0xffffffff, 0x000001ff,
128 };
129
130 uint64x2_t b3, b2, b1, /*b0,*/ a1, a0, m0, z0={0};
131 m0 = vreinterpretq_u64_u32(vld1q_u32(mask));
132 b1 = c1; a1 = c1;
133 a0 = vcombine_u64(vget_low_u64(c1), vget_low_u64(z0));
134 a1 = vshlq_n_u64(a1, 23);
135 a1 = vshrq_n_u64(a1, 23);
136 c1 = vorrq_u64(a1, a0);
137 b2 = vshrq_n_u64(c2, (64-23));
138 c3 = ShiftLeft128_ARMv8<23>(c3);
139 a0 = vcombine_u64(vget_high_u64(b2), vget_high_u64(z0));
140 c3 = vorrq_u64(c3, a0);
141 b1 = vshrq_n_u64(b1, (64-23));
142 c2 = ShiftLeft128_ARMv8<23>(c2);
143 a0 = vcombine_u64(vget_high_u64(b1), vget_high_u64(z0));
144 c2 = vorrq_u64(c2, a0);
145 b3 = c3;
146 b2 = vshrq_n_u64(c2, (64-10));
147 b3 = ShiftLeft128_ARMv8<10>(b3);
148 a0 = vcombine_u64(vget_high_u64(b2), vget_high_u64(z0));
149 b3 = vorrq_u64(b3, a0);
150 a0 = vcombine_u64(vget_high_u64(c3), vget_high_u64(z0));
151 b3 = veorq_u64(b3, a0);
152 b1 = vshrq_n_u64(b3, (64-23));
153 b3 = ShiftLeft128_ARMv8<23>(b3);
154 b3 = vcombine_u64(vget_high_u64(b3), vget_high_u64(z0));
155 b3 = vorrq_u64(b3, b1);
156 c2 = veorq_u64(c2, b3);
157 b3 = c3;
158 b2 = vshrq_n_u64(c2, (64-10));
159 b3 = ShiftLeft128_ARMv8<10>(b3);
160 b2 = vcombine_u64(vget_high_u64(b2), vget_high_u64(z0));
161 b3 = vorrq_u64(b3, b2);
162 b2 = c2;
163 b2 = ShiftLeft128_ARMv8<10>(b2);
164 a0 = vcombine_u64(vget_low_u64(z0), vget_low_u64(b2));
165 c2 = veorq_u64(c2, a0);
166 a0 = vcombine_u64(vget_low_u64(z0), vget_low_u64(b3));
167 a1 = vcombine_u64(vget_high_u64(b2), vget_high_u64(z0));
168 a0 = vorrq_u64(a0, a1);
169 c3 = veorq_u64(c3, a0);
170 c0 = veorq_u64(c0, c2);
171 c1 = veorq_u64(c1, c3);
172 c1 = vandq_u64(c1, m0);
173}
174
175#endif
176
177// ************************** SSE ************************** //
178
179#if (CRYPTOPP_CLMUL_AVAILABLE)
180
181using CryptoPP::word;
182
183// c1c0 = a * b
184inline void
185F2N_Multiply_128x128_CLMUL(__m128i& c1, __m128i& c0, const __m128i& a, const __m128i& b)
186{
187 __m128i t1, t2;
188
189 c0 = _mm_clmulepi64_si128(a, b, 0x00);
190 c1 = _mm_clmulepi64_si128(a, b, 0x11);
191 t1 = _mm_shuffle_epi32(a, 0xEE);
192 t1 = _mm_xor_si128(a, t1);
193 t2 = _mm_shuffle_epi32(b, 0xEE);
194 t2 = _mm_xor_si128(b, t2);
195 t1 = _mm_clmulepi64_si128(t1, t2, 0x00);
196 t1 = _mm_xor_si128(c0, t1);
197 t1 = _mm_xor_si128(c1, t1);
198 t2 = t1;
199 t1 = _mm_slli_si128(t1, 8);
200 t2 = _mm_srli_si128(t2, 8);
201 c0 = _mm_xor_si128(c0, t1);
202 c1 = _mm_xor_si128(c1, t2);
203}
204
205// c3c2c1c0 = a1a0 * b1b0
206inline void
207F2N_Multiply_256x256_CLMUL(__m128i& c3, __m128i& c2, __m128i& c1, __m128i& c0,
208 const __m128i& b1, const __m128i& b0, const __m128i& a1, const __m128i& a0)
209{
210 __m128i c4, c5;
211 __m128i x0=a0, x1=a1, y0=b0, y1=b1;
212
213 F2N_Multiply_128x128_CLMUL(c1, c0, x0, y0);
214 F2N_Multiply_128x128_CLMUL(c3, c2, x1, y1);
215
216 x0 = _mm_xor_si128(x0, x1);
217 y0 = _mm_xor_si128(y0, y1);
218
219 F2N_Multiply_128x128_CLMUL(c5, c4, x0, y0);
220
221 c4 = _mm_xor_si128(c4, c0);
222 c4 = _mm_xor_si128(c4, c2);
223 c5 = _mm_xor_si128(c5, c1);
224 c5 = _mm_xor_si128(c5, c3);
225 c1 = _mm_xor_si128(c1, c4);
226 c2 = _mm_xor_si128(c2, c5);
227}
228
229// c3c2c1c0 = a1a0 * a1a0
230inline void
231F2N_Square_256_CLMUL(__m128i& c3, __m128i& c2, __m128i& c1,
232 __m128i& c0, const __m128i& a1, const __m128i& a0)
233{
234 c0 = _mm_clmulepi64_si128(a0, a0, 0x00);
235 c1 = _mm_clmulepi64_si128(a0, a0, 0x11);
236 c2 = _mm_clmulepi64_si128(a1, a1, 0x00);
237 c3 = _mm_clmulepi64_si128(a1, a1, 0x11);
238}
239
240// x = (x << n), z = 0
241template <unsigned int N>
242inline __m128i ShiftLeft128_SSE(__m128i x, const __m128i& z)
243{
244 __m128i u=x, v;
245 x = _mm_slli_epi64(x, N);
246 u = _mm_srli_epi64(u, (64-N));
247 v = _mm_unpacklo_epi64(z, u);
248 x = _mm_or_si128(x, v);
249 return x;
250}
251
252// c1c0 = c3c2c1c0 MOD p. This is a Barrett reduction. Reading at
253// Intel paper or https://github.com/antonblanchard/crc32-vpmsum.
254inline void
255GF2NT_233_Reduce_CLMUL(__m128i& c3, __m128i& c2, __m128i& c1, __m128i& c0)
256{
257 const unsigned int m[4] = {
258 0xffffffff, 0xffffffff, 0xffffffff, 0x000001ff
259 };
260
261 __m128i b3, b2, b1, /*b0,*/ a1, a0, m0, z0;
262 m0 = _mm_set_epi32(m[3], m[2], m[1], m[0]);
263 z0 = _mm_setzero_si128();
264 b1 = c1; a1 = c1;
265 a0 = _mm_move_epi64(c1);
266 a1 = _mm_slli_epi64(a1, 23);
267 a1 = _mm_srli_epi64(a1, 23);
268 c1 = _mm_or_si128(a1, a0);
269 b2 = _mm_srli_epi64(c2, (64-23));
270 c3 = ShiftLeft128_SSE<23>(c3, z0);
271 a0 = _mm_unpackhi_epi64(b2, z0);
272 c3 = _mm_or_si128(c3, a0);
273 b1 = _mm_srli_epi64(b1, (64-23));
274 c2 = ShiftLeft128_SSE<23>(c2, z0);
275 a0 = _mm_unpackhi_epi64(b1, z0);
276 c2 = _mm_or_si128(c2, a0);
277 b3 = c3;
278 b2 = _mm_srli_epi64(c2, (64-10));
279 b3 = ShiftLeft128_SSE<10>(b3, z0);
280 a0 = _mm_unpackhi_epi64(b2, z0);
281 b3 = _mm_or_si128(b3, a0);
282 a0 = _mm_unpackhi_epi64(c3, z0);
283 b3 = _mm_xor_si128(b3, a0);
284 b1 = _mm_srli_epi64(b3, (64-23));
285 b3 = ShiftLeft128_SSE<23>(b3, z0);
286 b3 = _mm_unpackhi_epi64(b3, z0);
287 b3 = _mm_or_si128(b3, b1);
288 c2 = _mm_xor_si128(c2, b3);
289 b3 = c3;
290 b2 = _mm_srli_epi64(c2, (64-10));
291 b3 = ShiftLeft128_SSE<10>(b3, z0);
292 b2 = _mm_unpackhi_epi64(b2, z0);
293 b3 = _mm_or_si128(b3, b2);
294 b2 = c2;
295 b2 = ShiftLeft128_SSE<10>(b2, z0);
296 a0 = _mm_unpacklo_epi64(z0, b2);
297 c2 = _mm_xor_si128(c2, a0);
298 a0 = _mm_unpacklo_epi64(z0, b3);
299 a1 = _mm_unpackhi_epi64(b2, z0);
300 a0 = _mm_or_si128(a0, a1);
301 c3 = _mm_xor_si128(c3, a0);
302 c0 = _mm_xor_si128(c0, c2);
303 c1 = _mm_xor_si128(c1, c3);
304 c1 = _mm_and_si128(c1, m0);
305}
306
307#endif
308
309// ************************* Power8 ************************* //
310
311#if (CRYPTOPP_POWER8_VMULL_AVAILABLE) && 0
312
313using CryptoPP::byte;
314using CryptoPP::word;
317
320
321using CryptoPP::VecOr;
322using CryptoPP::VecXor;
323using CryptoPP::VecAnd;
324
330
333
334// c1c0 = a * b
335inline void
336F2N_Multiply_128x128_POWER8(uint64x2_p& c1, uint64x2_p& c0, const uint64x2_p& a, const uint64x2_p& b)
337{
338 uint64x2_p t1, t2;
339 const uint64x2_p z0={0};
340
341 c0 = VecIntelMultiply00(a, b);
342 c1 = VecIntelMultiply11(a, b);
343 t1 = VecMergeLow(a, a);
344 t1 = VecXor(a, t1);
345 t2 = VecMergeLow(b, b);
346 t2 = VecXor(b, t2);
347 t1 = VecIntelMultiply00(t1, t2);
348 t1 = VecXor(c0, t1);
349 t1 = VecXor(c1, t1);
350 t2 = t1;
351 t1 = VecMergeHigh(z0, t1);
352 t2 = VecMergeLow(t2, z0);
353 c0 = VecXor(c0, t1);
354 c1 = VecXor(c1, t2);
355}
356
357// c3c2c1c0 = a1a0 * b1b0
358inline void
359F2N_Multiply_256x256_POWER8(uint64x2_p& c3, uint64x2_p& c2, uint64x2_p& c1, uint64x2_p& c0,
360 const uint64x2_p& b1, const uint64x2_p& b0, const uint64x2_p& a1, const uint64x2_p& a0)
361{
362 uint64x2_p c4, c5;
363 uint64x2_p x0=a0, x1=a1, y0=b0, y1=b1;
364
365 F2N_Multiply_128x128_POWER8(c1, c0, x0, y0);
366 F2N_Multiply_128x128_POWER8(c3, c2, x1, y1);
367
368 x0 = VecXor(x0, x1);
369 y0 = VecXor(y0, y1);
370
371 F2N_Multiply_128x128_POWER8(c5, c4, x0, y0);
372
373 c4 = VecXor(c4, c0);
374 c4 = VecXor(c4, c2);
375 c5 = VecXor(c5, c1);
376 c5 = VecXor(c5, c3);
377 c1 = VecXor(c1, c4);
378 c2 = VecXor(c2, c5);
379}
380
381// c3c2c1c0 = a1a0 * a1a0
382inline void
383F2N_Square_256_POWER8(uint64x2_p& c3, uint64x2_p& c2, uint64x2_p& c1,
384 uint64x2_p& c0, const uint64x2_p& a1, const uint64x2_p& a0)
385{
386 c0 = VecIntelMultiply00(a0, a0);
387 c1 = VecIntelMultiply11(a0, a0);
388 c2 = VecIntelMultiply00(a1, a1);
389 c3 = VecIntelMultiply11(a1, a1);
390}
391
392// x = (x << n), z = 0
393template <unsigned int N>
394inline uint64x2_p ShiftLeft128_POWER8(uint64x2_p x)
395{
396 uint64x2_p u=x, v;
397 const uint64x2_p z={0};
398
399 x = VecShiftLeft<N>(x);
400 u = VecShiftRight<64-N>(u);
401 v = VecMergeHigh(z, u);
402 x = VecOr(x, v);
403 return x;
404}
405
406// c1c0 = c3c2c1c0 MOD p. This is a Barrett reduction. Reading at
407// Intel paper or https://github.com/antonblanchard/crc32-vpmsum.
408inline void
409GF2NT_233_Reduce_POWER8(uint64x2_p& c3, uint64x2_p& c2, uint64x2_p& c1, uint64x2_p& c0)
410{
411 const uint64_t mod[] = {W64LIT(0xffffffffffffffff), W64LIT(0x01ffffffffff)};
412 const uint64x2_p m0 = (uint64x2_p)VecLoad(mod);
413
414 uint64x2_p b3, b2, b1, /*b0,*/ a1, a0;
415 const uint64x2_p z0={0};
416
417 b1 = c1; a1 = c1;
418 a0 = VecMergeHigh(c1, z0);
419 a1 = VecShiftLeft<23>(a1);
420 a1 = VecShiftRight<23>(a1);
421 c1 = VecOr(a1, a0);
422 b2 = VecShiftRight<64-23>(c2);
423 c3 = ShiftLeft128_POWER8<23>(c3);
424 a0 = VecMergeLow(b2, z0);
425 c3 = VecOr(c3, a0);
426 b1 = VecShiftRight<64-23>(b1);
427 c2 = ShiftLeft128_POWER8<23>(c2);
428 a0 = VecMergeLow(b1, z0);
429 c2 = VecOr(c2, a0);
430 b3 = c3;
431 b2 = VecShiftRight<64-10>(c2);
432 b3 = ShiftLeft128_POWER8<10>(b3);
433 a0 = VecMergeLow(b2, z0);
434 b3 = VecOr(b3, a0);
435 a0 = VecMergeLow(c3, z0);
436 b3 = VecXor(b3, a0);
437 b1 = VecShiftRight<64-23>(b3);
438 b3 = ShiftLeft128_POWER8<23>(b3);
439 b3 = VecMergeLow(b3, z0);
440 b3 = VecOr(b3, b1);
441 c2 = VecXor(c2, b3);
442 b3 = c3;
443 b2 = VecShiftRight<64-10>(c2);
444 b3 = ShiftLeft128_POWER8<10>(b3);
445 b2 = VecMergeLow(b2, z0);
446 b3 = VecOr(b3, b2);
447 b2 = c2;
448 b2 = ShiftLeft128_POWER8<10>(b2);
449 a0 = VecMergeHigh(z0, b2);
450 c2 = VecXor(c2, a0);
451 a0 = VecMergeHigh(z0, b3);
452 a1 = VecMergeLow(b2, z0);
453 a0 = VecOr(a0, a1);
454 c3 = VecXor(c3, a0);
455 c0 = VecXor(c0, c2);
456 c1 = VecXor(c1, c3);
457 c1 = VecAnd(c1, m0);
458}
459
460#endif
461
462ANONYMOUS_NAMESPACE_END
463
464NAMESPACE_BEGIN(CryptoPP)
465
466#if (CRYPTOPP_CLMUL_AVAILABLE)
467
468void
469GF2NT_233_Multiply_Reduce_CLMUL(const word* pA, const word* pB, word* pC)
470{
471 enum {S=sizeof(__m128i)/sizeof(word)};
472 __m128i a0 = _mm_loadu_si128(reinterpret_cast<const __m128i*>(pA+0*S));
473 __m128i a1 = _mm_loadu_si128(reinterpret_cast<const __m128i*>(pA+1*S));
474 __m128i b0 = _mm_loadu_si128(reinterpret_cast<const __m128i*>(pB+0*S));
475 __m128i b1 = _mm_loadu_si128(reinterpret_cast<const __m128i*>(pB+1*S));
476
477 __m128i c0, c1, c2, c3;
478 F2N_Multiply_256x256_CLMUL(c3, c2, c1, c0, a1, a0, b1, b0);
479 GF2NT_233_Reduce_CLMUL(c3, c2, c1, c0);
480
481 _mm_storeu_si128(reinterpret_cast<__m128i*>(pC+0*S), c0);
482 _mm_storeu_si128(reinterpret_cast<__m128i*>(pC+1*S), c1);
483}
484
485void
486GF2NT_233_Square_Reduce_CLMUL(const word* pA, word* pC)
487{
488 enum {S=sizeof(__m128i)/sizeof(word)};
489 __m128i a0 = _mm_loadu_si128(reinterpret_cast<const __m128i*>(pA+0*S));
490 __m128i a1 = _mm_loadu_si128(reinterpret_cast<const __m128i*>(pA+1*S));
491
492 __m128i c0, c1, c2, c3;
493 F2N_Square_256_CLMUL(c3, c2, c1, c0, a1, a0);
494 GF2NT_233_Reduce_CLMUL(c3, c2, c1, c0);
495
496 _mm_storeu_si128(reinterpret_cast<__m128i*>(pC+0*S), c0);
497 _mm_storeu_si128(reinterpret_cast<__m128i*>(pC+1*S), c1);
498}
499
500#elif (CRYPTOPP_ARM_PMULL_AVAILABLE)
501
502void
503GF2NT_233_Multiply_Reduce_ARMv8(const word* pA, const word* pB, word* pC)
504{
505 // word is either 32-bit or 64-bit, depending on the platform.
506 // Load using a 32-bit pointer to avoid possible alignment issues.
507 const uint32_t* pAA = reinterpret_cast<const uint32_t*>(pA);
508 const uint32_t* pBB = reinterpret_cast<const uint32_t*>(pB);
509
510 uint64x2_t a0 = vreinterpretq_u64_u32(vld1q_u32(pAA+0));
511 uint64x2_t a1 = vreinterpretq_u64_u32(vld1q_u32(pAA+4));
512 uint64x2_t b0 = vreinterpretq_u64_u32(vld1q_u32(pBB+0));
513 uint64x2_t b1 = vreinterpretq_u64_u32(vld1q_u32(pBB+4));
514
515 uint64x2_t c0, c1, c2, c3;
516 F2N_Multiply_256x256_ARMv8(c3, c2, c1, c0, a1, a0, b1, b0);
517 GF2NT_233_Reduce_ARMv8(c3, c2, c1, c0);
518
519 uint32_t* pCC = reinterpret_cast<uint32_t*>(pC);
520 vst1q_u32(pCC+0, vreinterpretq_u32_u64(c0));
521 vst1q_u32(pCC+4, vreinterpretq_u32_u64(c1));
522}
523
524void
525GF2NT_233_Square_Reduce_ARMv8(const word* pA, word* pC)
526{
527 // word is either 32-bit or 64-bit, depending on the platform.
528 // Load using a 32-bit pointer to avoid possible alignment issues.
529 const uint32_t* pAA = reinterpret_cast<const uint32_t*>(pA);
530 uint64x2_t a0 = vreinterpretq_u64_u32(vld1q_u32(pAA+0));
531 uint64x2_t a1 = vreinterpretq_u64_u32(vld1q_u32(pAA+4));
532
533 uint64x2_t c0, c1, c2, c3;
534 F2N_Square_256_ARMv8(c3, c2, c1, c0, a1, a0);
535 GF2NT_233_Reduce_ARMv8(c3, c2, c1, c0);
536
537 uint32_t* pCC = reinterpret_cast<uint32_t*>(pC);
538 vst1q_u32(pCC+0, vreinterpretq_u32_u64(c0));
539 vst1q_u32(pCC+4, vreinterpretq_u32_u64(c1));
540}
541
542#elif (CRYPTOPP_POWER8_VMULL_AVAILABLE) && 0
543
544void
545GF2NT_233_Multiply_Reduce_POWER8(const word* pA, const word* pB, word* pC)
546{
547 // word is either 32-bit or 64-bit, depending on the platform.
548 // Load using a byte pointer to avoid possible alignment issues.
549 const byte* pAA = reinterpret_cast<const byte*>(pA);
550 const byte* pBB = reinterpret_cast<const byte*>(pB);
551
552 uint64x2_p a0 = (uint64x2_p)VecLoad(pAA+0);
553 uint64x2_p a1 = (uint64x2_p)VecLoad(pAA+16);
554 uint64x2_p b0 = (uint64x2_p)VecLoad(pBB+0);
555 uint64x2_p b1 = (uint64x2_p)VecLoad(pBB+16);
556
557#if (CRYPTOPP_BIG_ENDIAN)
558 const uint8_t mb[] = {4,5,6,7, 0,1,2,3, 12,13,14,15, 8,9,10,11};
559 const uint8x16_p m = (uint8x16_p)VecLoad(mb);
560 a0 = VecPermute(a0, m);
561 a1 = VecPermute(a1, m);
562 b0 = VecPermute(b0, m);
563 b1 = VecPermute(b1, m);
564#endif
565
566 uint64x2_p c0, c1, c2, c3;
567 F2N_Multiply_256x256_POWER8(c3, c2, c1, c0, a1, a0, b1, b0);
568 GF2NT_233_Reduce_POWER8(c3, c2, c1, c0);
569
570#if (CRYPTOPP_BIG_ENDIAN)
571 c0 = VecPermute(c0, m);
572 c1 = VecPermute(c1, m);
573#endif
574
575 byte* pCC = reinterpret_cast<byte*>(pC);
576 VecStore(c0, pCC+0);
577 VecStore(c1, pCC+16);
578}
579
580void
581GF2NT_233_Square_Reduce_POWER8(const word* pA, word* pC)
582{
583 // word is either 32-bit or 64-bit, depending on the platform.
584 // Load using a byte pointer to avoid possible alignment issues.
585 const byte* pAA = reinterpret_cast<const byte*>(pA);
586 uint64x2_p a0 = (uint64x2_p)VecLoad(pAA+0);
587 uint64x2_p a1 = (uint64x2_p)VecLoad(pAA+16);
588
589#if (CRYPTOPP_BIG_ENDIAN)
590 const uint8_t mb[] = {4,5,6,7, 0,1,2,3, 12,13,14,15, 8,9,10,11};
591 const uint8x16_p m = (uint8x16_p)VecLoad(mb);
592 a0 = VecPermute(a0, m);
593 a1 = VecPermute(a1, m);
594#endif
595
596 uint64x2_p c0, c1, c2, c3;
597 F2N_Square_256_POWER8(c3, c2, c1, c0, a1, a0);
598 GF2NT_233_Reduce_POWER8(c3, c2, c1, c0);
599
600#if (CRYPTOPP_BIG_ENDIAN)
601 c0 = VecPermute(c0, m);
602 c1 = VecPermute(c1, m);
603#endif
604
605 byte* pCC = reinterpret_cast<byte*>(pC);
606 VecStore(c0, pCC+0);
607 VecStore(c1, pCC+16);
608}
609
610#endif
611
612NAMESPACE_END
613
614#endif // CRYPTOPP_IMPORTS
Support functions for ARM and vector operations.
uint64x2_t PMULL_00(const uint64x2_t a, const uint64x2_t b)
Polynomial multiplication.
Definition: arm_simd.h:152
uint64x2_t PMULL_11(const uint64x2_t a, const uint64x2_t b)
Polynomial multiplication.
Definition: arm_simd.h:242
Library configuration file.
unsigned char byte
8-bit unsigned datatype
Definition: config_int.h:56
word64 word
Full word used for multiprecision integer arithmetic.
Definition: config_int.h:182
#define W64LIT(x)
Declare an unsigned word64.
Definition: config_int.h:119
Classes and functions for schemes over GF(2^n)
Crypto++ library namespace.
Precompiled header file.
Support functions for PowerPC and vector operations.
T1 VecOr(const T1 vec1, const T2 vec2)
OR two vectors.
Definition: ppc_simd.h:1395
T1 VecPermute(const T1 vec, const T2 mask)
Permutes a vector.
Definition: ppc_simd.h:1478
uint64x2_p VecIntelMultiply00(const uint64x2_p &a, const uint64x2_p &b)
Polynomial multiplication.
Definition: ppc_simd.h:2517
T VecMergeHigh(const T vec1, const T vec2)
Merge two vectors.
Definition: ppc_simd.h:1819
__vector unsigned char uint8x16_p
Vector of 8-bit elements.
Definition: ppc_simd.h:192
T1 VecXor(const T1 vec1, const T2 vec2)
XOR two vectors.
Definition: ppc_simd.h:1414
__vector unsigned long long uint64x2_p
Vector of 64-bit elements.
Definition: ppc_simd.h:212
T VecMergeLow(const T vec1, const T vec2)
Merge two vectors.
Definition: ppc_simd.h:1805
uint64x2_p VecIntelMultiply11(const uint64x2_p &a, const uint64x2_p &b)
Polynomial multiplication.
Definition: ppc_simd.h:2583
T1 VecAnd(const T1 vec1, const T2 vec2)
AND two vectors.
Definition: ppc_simd.h:1376
uint32x4_p VecShiftRight(const uint32x4_p vec)
Shift a vector right.
Definition: ppc_simd.h:1708
void VecStore(const T data, byte dest[16])
Stores a vector to a byte array.
Definition: ppc_simd.h:895
uint32x4_p VecShiftLeft(const uint32x4_p vec)
Shift a vector left.
Definition: ppc_simd.h:1692
uint32x4_p VecLoad(const byte src[16])
Loads a vector from a byte array.
Definition: ppc_simd.h:369