Crypto++ 8.7
Free C++ class library of cryptographic schemes
eccrypto.h
Go to the documentation of this file.
1// eccrypto.h - originally written and placed in the public domain by Wei Dai
2// deterministic signatures added by by Douglas Roark
3
4/// \file eccrypto.h
5/// \brief Classes and functions for Elliptic Curves over prime and binary fields
6
7#ifndef CRYPTOPP_ECCRYPTO_H
8#define CRYPTOPP_ECCRYPTO_H
9
10#include "config.h"
11#include "cryptlib.h"
12#include "pubkey.h"
13#include "integer.h"
14#include "asn.h"
15#include "hmac.h"
16#include "sha.h"
17#include "gfpcrypt.h"
18#include "dh.h"
19#include "mqv.h"
20#include "hmqv.h"
21#include "fhmqv.h"
22#include "ecp.h"
23#include "ec2n.h"
24
25#include <iosfwd>
26
27#if CRYPTOPP_MSC_VERSION
28# pragma warning(push)
29# pragma warning(disable: 4231 4275)
30#endif
31
32NAMESPACE_BEGIN(CryptoPP)
33
34/// \brief Elliptic Curve Parameters
35/// \tparam EC elliptic curve field
36/// \details This class corresponds to the ASN.1 sequence of the same name
37/// in ANSI X9.62 and SEC 1. EC is currently defined for ECP and EC2N.
38template <class EC>
39class DL_GroupParameters_EC : public DL_GroupParametersImpl<EcPrecomputation<EC> >
40{
42
43public:
44 typedef EC EllipticCurve;
45 typedef typename EllipticCurve::Point Point;
46 typedef Point Element;
48
49 virtual ~DL_GroupParameters_EC() {}
50
51 /// \brief Construct an EC GroupParameters
52 DL_GroupParameters_EC() : m_compress(false), m_encodeAsOID(true) {}
53
54 /// \brief Construct an EC GroupParameters
55 /// \param oid the OID of a curve
57 : m_compress(false), m_encodeAsOID(true) {Initialize(oid);}
58
59 /// \brief Construct an EC GroupParameters
60 /// \param ec the elliptic curve
61 /// \param G the base point
62 /// \param n the order of the base point
63 /// \param k the cofactor
64 DL_GroupParameters_EC(const EllipticCurve &ec, const Point &G, const Integer &n, const Integer &k = Integer::Zero())
65 : m_compress(false), m_encodeAsOID(true) {Initialize(ec, G, n, k);}
66
67 /// \brief Construct an EC GroupParameters
68 /// \param bt BufferedTransformation with group parameters
70 : m_compress(false), m_encodeAsOID(true) {BERDecode(bt);}
71
72 /// \brief Initialize an EC GroupParameters using {EC,G,n,k}
73 /// \param ec the elliptic curve
74 /// \param G the base point
75 /// \param n the order of the base point
76 /// \param k the cofactor
77 /// \details This Initialize() function overload initializes group parameters from existing parameters.
78 void Initialize(const EllipticCurve &ec, const Point &G, const Integer &n, const Integer &k = Integer::Zero())
79 {
80 this->m_groupPrecomputation.SetCurve(ec);
81 this->SetSubgroupGenerator(G);
82 m_n = n;
83 m_k = k;
84 }
85
86 /// \brief Initialize a DL_GroupParameters_EC {EC,G,n,k}
87 /// \param oid the OID of a curve
88 /// \details This Initialize() function overload initializes group parameters from existing parameters.
89 void Initialize(const OID &oid);
90
91 // NameValuePairs
92 bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const;
93 void AssignFrom(const NameValuePairs &source);
94
95 // GeneratibleCryptoMaterial interface
96 /// this implementation doesn't actually generate a curve, it just initializes the parameters with existing values
97 /*! parameters: (Curve, SubgroupGenerator, SubgroupOrder, Cofactor (optional)), or (GroupOID) */
99
100 // DL_GroupParameters
101 const DL_FixedBasePrecomputation<Element> & GetBasePrecomputation() const {return this->m_gpc;}
103 const Integer & GetSubgroupOrder() const {return m_n;}
105 bool ValidateGroup(RandomNumberGenerator &rng, unsigned int level) const;
106 bool ValidateElement(unsigned int level, const Element &element, const DL_FixedBasePrecomputation<Element> *precomp) const;
107 bool FastSubgroupCheckAvailable() const {return false;}
108 void EncodeElement(bool reversible, const Element &element, byte *encoded) const
109 {
110 if (reversible)
111 GetCurve().EncodePoint(encoded, element, m_compress);
112 else
113 element.x.Encode(encoded, GetEncodedElementSize(false));
114 }
115 virtual unsigned int GetEncodedElementSize(bool reversible) const
116 {
117 if (reversible)
118 return GetCurve().EncodedPointSize(m_compress);
119 else
120 return GetCurve().GetField().MaxElementByteLength();
121 }
122 Element DecodeElement(const byte *encoded, bool checkForGroupMembership) const
123 {
124 Point result;
125 if (!GetCurve().DecodePoint(result, encoded, GetEncodedElementSize(true)))
126 throw DL_BadElement();
127 if (checkForGroupMembership && !ValidateElement(1, result, NULLPTR))
128 throw DL_BadElement();
129 return result;
130 }
131 Integer ConvertElementToInteger(const Element &element) const;
133 bool IsIdentity(const Element &element) const {return element.identity;}
134 void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const;
135 static std::string CRYPTOPP_API StaticAlgorithmNamePrefix() {return "EC";}
136
137 // ASN1Key
138 OID GetAlgorithmID() const;
139
140 // used by MQV
141 Element MultiplyElements(const Element &a, const Element &b) const;
142 Element CascadeExponentiate(const Element &element1, const Integer &exponent1, const Element &element2, const Integer &exponent2) const;
143
144 // non-inherited
145
146 // enumerate OIDs for recommended parameters, use OID() to get first one
147 static OID CRYPTOPP_API GetNextRecommendedParametersOID(const OID &oid);
148
149 void BERDecode(BufferedTransformation &bt);
150 void DEREncode(BufferedTransformation &bt) const;
151
152 void SetPointCompression(bool compress) {m_compress = compress;}
153 bool GetPointCompression() const {return m_compress;}
154
155 void SetEncodeAsOID(bool encodeAsOID) {m_encodeAsOID = encodeAsOID;}
156 bool GetEncodeAsOID() const {return m_encodeAsOID;}
157
158 const EllipticCurve& GetCurve() const {return this->m_groupPrecomputation.GetCurve();}
159
160 bool operator==(const ThisClass &rhs) const
161 {return this->m_groupPrecomputation.GetCurve() == rhs.m_groupPrecomputation.GetCurve() && this->m_gpc.GetBase(this->m_groupPrecomputation) == rhs.m_gpc.GetBase(rhs.m_groupPrecomputation);}
162
163protected:
164 unsigned int FieldElementLength() const {return GetCurve().GetField().MaxElementByteLength();}
165 unsigned int ExponentLength() const {return m_n.ByteCount();}
166
167 OID m_oid; // set if parameters loaded from a recommended curve
168 Integer m_n; // order of base point
169 mutable Integer m_k; // cofactor
170 mutable bool m_compress, m_encodeAsOID; // presentation details
171};
172
173inline std::ostream& operator<<(std::ostream& os, const DL_GroupParameters_EC<ECP>::Element& obj);
174
175/// \brief Elliptic Curve Discrete Log (DL) public key
176/// \tparam EC elliptic curve field
177template <class EC>
178class DL_PublicKey_EC : public DL_PublicKeyImpl<DL_GroupParameters_EC<EC> >
179{
180public:
181 typedef typename EC::Point Element;
182
183 virtual ~DL_PublicKey_EC() {}
184
185 /// \brief Initialize an EC Public Key using {GP,Q}
186 /// \param params group parameters
187 /// \param Q the public point
188 /// \details This Initialize() function overload initializes a public key from existing parameters.
189 void Initialize(const DL_GroupParameters_EC<EC> &params, const Element &Q)
190 {this->AccessGroupParameters() = params; this->SetPublicElement(Q);}
191
192 /// \brief Initialize an EC Public Key using {EC,G,n,Q}
193 /// \param ec the elliptic curve
194 /// \param G the base point
195 /// \param n the order of the base point
196 /// \param Q the public point
197 /// \details This Initialize() function overload initializes a public key from existing parameters.
198 void Initialize(const EC &ec, const Element &G, const Integer &n, const Element &Q)
199 {this->AccessGroupParameters().Initialize(ec, G, n); this->SetPublicElement(Q);}
200
201 // X509PublicKey
202 void BERDecodePublicKey(BufferedTransformation &bt, bool parametersPresent, size_t size);
204};
205
206/// \brief Elliptic Curve Discrete Log (DL) private key
207/// \tparam EC elliptic curve field
208template <class EC>
209class DL_PrivateKey_EC : public DL_PrivateKeyImpl<DL_GroupParameters_EC<EC> >
210{
211public:
212 typedef typename EC::Point Element;
213
214 virtual ~DL_PrivateKey_EC();
215
216 /// \brief Initialize an EC Private Key using {GP,x}
217 /// \param params group parameters
218 /// \param x the private exponent
219 /// \details This Initialize() function overload initializes a private key from existing parameters.
220 void Initialize(const DL_GroupParameters_EC<EC> &params, const Integer &x)
221 {this->AccessGroupParameters() = params; this->SetPrivateExponent(x);}
222
223 /// \brief Initialize an EC Private Key using {EC,G,n,x}
224 /// \param ec the elliptic curve
225 /// \param G the base point
226 /// \param n the order of the base point
227 /// \param x the private exponent
228 /// \details This Initialize() function overload initializes a private key from existing parameters.
229 void Initialize(const EC &ec, const Element &G, const Integer &n, const Integer &x)
230 {this->AccessGroupParameters().Initialize(ec, G, n); this->SetPrivateExponent(x);}
231
232 /// \brief Create an EC private key
233 /// \param rng a RandomNumberGenerator derived class
234 /// \param params the EC group parameters
235 /// \details This function overload of Initialize() creates a new private key because it
236 /// takes a RandomNumberGenerator() as a parameter. If you have an existing keypair,
237 /// then use one of the other Initialize() overloads.
239 {this->GenerateRandom(rng, params);}
240
241 /// \brief Create an EC private key
242 /// \param rng a RandomNumberGenerator derived class
243 /// \param ec the elliptic curve
244 /// \param G the base point
245 /// \param n the order of the base point
246 /// \details This function overload of Initialize() creates a new private key because it
247 /// takes a RandomNumberGenerator() as a parameter. If you have an existing keypair,
248 /// then use one of the other Initialize() overloads.
249 void Initialize(RandomNumberGenerator &rng, const EC &ec, const Element &G, const Integer &n)
250 {this->GenerateRandom(rng, DL_GroupParameters_EC<EC>(ec, G, n));}
251
252 // PKCS8PrivateKey
253 void BERDecodePrivateKey(BufferedTransformation &bt, bool parametersPresent, size_t size);
255};
256
257// Out-of-line dtor due to AIX and GCC, http://github.com/weidai11/cryptopp/issues/499
258template<class EC>
260
261/// \brief Elliptic Curve Diffie-Hellman
262/// \tparam EC elliptic curve field
263/// \tparam COFACTOR_OPTION cofactor multiplication option
264/// \sa CofactorMultiplicationOption, <a href="http://www.weidai.com/scan-mirror/ka.html#ECDH">Elliptic Curve Diffie-Hellman, AKA ECDH</a>
265/// \since Crypto++ 3.0
266template <class EC, class COFACTOR_OPTION = typename DL_GroupParameters_EC<EC>::DefaultCofactorOption>
267struct ECDH
268{
269 typedef DH_Domain<DL_GroupParameters_EC<EC>, COFACTOR_OPTION> Domain;
270};
271
272/// \brief Elliptic Curve Menezes-Qu-Vanstone
273/// \tparam EC elliptic curve field
274/// \tparam COFACTOR_OPTION cofactor multiplication option
275/// \sa CofactorMultiplicationOption, <a href="http://www.weidai.com/scan-mirror/ka.html#ECMQV">Elliptic Curve Menezes-Qu-Vanstone, AKA ECMQV</a>
276template <class EC, class COFACTOR_OPTION = typename DL_GroupParameters_EC<EC>::DefaultCofactorOption>
277struct ECMQV
278{
279 typedef MQV_Domain<DL_GroupParameters_EC<EC>, COFACTOR_OPTION> Domain;
280};
281
282/// \brief Hashed Elliptic Curve Menezes-Qu-Vanstone
283/// \tparam EC elliptic curve field
284/// \tparam COFACTOR_OPTION cofactor multiplication option
285/// \details This implementation follows Hugo Krawczyk's <a href="http://eprint.iacr.org/2005/176">HMQV: A High-Performance
286/// Secure Diffie-Hellman Protocol</a>. Note: this implements HMQV only. HMQV-C with Key Confirmation is not provided.
287/// \sa CofactorMultiplicationOption
288template <class EC, class COFACTOR_OPTION = typename DL_GroupParameters_EC<EC>::DefaultCofactorOption, class HASH = SHA256>
289struct ECHMQV
290{
291 typedef HMQV_Domain<DL_GroupParameters_EC<EC>, COFACTOR_OPTION, HASH> Domain;
292};
293
298
299/// \brief Fully Hashed Elliptic Curve Menezes-Qu-Vanstone
300/// \tparam EC elliptic curve field
301/// \tparam COFACTOR_OPTION cofactor multiplication option
302/// \details This implementation follows Augustin P. Sarr and Philippe Elbaz–Vincent, and Jean–Claude Bajard's
303/// <a href="http://eprint.iacr.org/2009/408">A Secure and Efficient Authenticated Diffie-Hellman Protocol</a>.
304/// Note: this is FHMQV, Protocol 5, from page 11; and not FHMQV-C.
305/// \sa CofactorMultiplicationOption
306template <class EC, class COFACTOR_OPTION = typename DL_GroupParameters_EC<EC>::DefaultCofactorOption, class HASH = SHA256>
308{
309 typedef FHMQV_Domain<DL_GroupParameters_EC<EC>, COFACTOR_OPTION, HASH> Domain;
310};
311
316
317/// \brief Elliptic Curve Discrete Log (DL) keys
318/// \tparam EC elliptic curve field
319template <class EC>
321{
324};
325
326// Forward declaration; documented below
327template <class EC, class H>
328struct ECDSA;
329
330/// \brief Elliptic Curve DSA keys
331/// \tparam EC elliptic curve field
332/// \since Crypto++ 3.2
333template <class EC>
335{
338};
339
340/// \brief Elliptic Curve DSA (ECDSA) signature algorithm
341/// \tparam EC elliptic curve field
342/// \since Crypto++ 3.2
343template <class EC>
344class DL_Algorithm_ECDSA : public DL_Algorithm_GDSA<typename EC::Point>
345{
346public:
347 CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "ECDSA";}
348};
349
350/// \brief Elliptic Curve DSA (ECDSA) signature algorithm based on RFC 6979
351/// \tparam EC elliptic curve field
352/// \sa <a href="http://tools.ietf.org/rfc/rfc6979.txt">RFC 6979, Deterministic Usage of the
353/// Digital Signature Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA)</a>
354/// \since Crypto++ 6.0
355template <class EC, class H>
356class DL_Algorithm_ECDSA_RFC6979 : public DL_Algorithm_DSA_RFC6979<typename EC::Point, H>
357{
358public:
359 CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "ECDSA-RFC6979";}
360};
361
362/// \brief Elliptic Curve NR (ECNR) signature algorithm
363/// \tparam EC elliptic curve field
364template <class EC>
365class DL_Algorithm_ECNR : public DL_Algorithm_NR<typename EC::Point>
366{
367public:
368 CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "ECNR";}
369};
370
371/// \brief Elliptic Curve DSA (ECDSA) signature scheme
372/// \tparam EC elliptic curve field
373/// \tparam H HashTransformation derived class
374/// \sa <a href="http://www.weidai.com/scan-mirror/sig.html#ECDSA">ECDSA</a>
375/// \since Crypto++ 3.2
376template <class EC, class H>
377struct ECDSA : public DL_SS<DL_Keys_ECDSA<EC>, DL_Algorithm_ECDSA<EC>, DL_SignatureMessageEncodingMethod_DSA, H>
378{
379};
380
381/// \brief Elliptic Curve DSA (ECDSA) deterministic signature scheme
382/// \tparam EC elliptic curve field
383/// \tparam H HashTransformation derived class
384/// \sa <a href="http://tools.ietf.org/rfc/rfc6979.txt">Deterministic Usage of the
385/// Digital Signature Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA)</a>
386/// \since Crypto++ 6.0
387template <class EC, class H>
388struct ECDSA_RFC6979 : public DL_SS<
389 DL_Keys_ECDSA<EC>,
390 DL_Algorithm_ECDSA_RFC6979<EC, H>,
391 DL_SignatureMessageEncodingMethod_DSA,
392 H,
393 ECDSA_RFC6979<EC,H> >
394{
395 static std::string CRYPTOPP_API StaticAlgorithmName() {return std::string("ECDSA-RFC6979/") + H::StaticAlgorithmName();}
396};
397
398/// \brief Elliptic Curve NR (ECNR) signature scheme
399/// \tparam EC elliptic curve field
400/// \tparam H HashTransformation derived class
401template <class EC, class H = SHA1>
402struct ECNR : public DL_SS<DL_Keys_EC<EC>, DL_Algorithm_ECNR<EC>, DL_SignatureMessageEncodingMethod_NR, H>
403{
404};
405
406// ******************************************
407
408template <class EC>
410template <class EC>
412
413/// \brief Elliptic Curve German DSA key for ISO/IEC 15946
414/// \tparam EC elliptic curve field
415/// \sa ECGDSA
416/// \since Crypto++ 6.0
417template <class EC>
418class DL_PrivateKey_ECGDSA : public DL_PrivateKeyImpl<DL_GroupParameters_EC<EC> >
419{
420public:
421 typedef typename EC::Point Element;
422
423 virtual ~DL_PrivateKey_ECGDSA() {}
424
425 /// \brief Initialize an EC Private Key using {GP,x}
426 /// \param params group parameters
427 /// \param x the private exponent
428 /// \details This Initialize() function overload initializes a private key from existing parameters.
429 void Initialize(const DL_GroupParameters_EC<EC> &params, const Integer &x)
430 {
431 this->AccessGroupParameters() = params;
432 this->SetPrivateExponent(x);
433 CRYPTOPP_ASSERT(x>=1 && x<=params.GetSubgroupOrder()-1);
434 }
435
436 /// \brief Initialize an EC Private Key using {EC,G,n,x}
437 /// \param ec the elliptic curve
438 /// \param G the base point
439 /// \param n the order of the base point
440 /// \param x the private exponent
441 /// \details This Initialize() function overload initializes a private key from existing parameters.
442 void Initialize(const EC &ec, const Element &G, const Integer &n, const Integer &x)
443 {
444 this->AccessGroupParameters().Initialize(ec, G, n);
445 this->SetPrivateExponent(x);
446 CRYPTOPP_ASSERT(x>=1 && x<=this->AccessGroupParameters().GetSubgroupOrder()-1);
447 }
448
449 /// \brief Create an EC private key
450 /// \param rng a RandomNumberGenerator derived class
451 /// \param params the EC group parameters
452 /// \details This function overload of Initialize() creates a new private key because it
453 /// takes a RandomNumberGenerator() as a parameter. If you have an existing keypair,
454 /// then use one of the other Initialize() overloads.
456 {this->GenerateRandom(rng, params);}
457
458 /// \brief Create an EC private key
459 /// \param rng a RandomNumberGenerator derived class
460 /// \param ec the elliptic curve
461 /// \param G the base point
462 /// \param n the order of the base point
463 /// \details This function overload of Initialize() creates a new private key because it
464 /// takes a RandomNumberGenerator() as a parameter. If you have an existing keypair,
465 /// then use one of the other Initialize() overloads.
466 void Initialize(RandomNumberGenerator &rng, const EC &ec, const Element &G, const Integer &n)
467 {this->GenerateRandom(rng, DL_GroupParameters_EC<EC>(ec, G, n));}
468
469 virtual void MakePublicKey(DL_PublicKey_ECGDSA<EC> &pub) const
470 {
472 pub.AccessAbstractGroupParameters().AssignFrom(params);
473 const Integer &xInv = this->GetPrivateExponent().InverseMod(params.GetSubgroupOrder());
474 pub.SetPublicElement(params.ExponentiateBase(xInv));
475 CRYPTOPP_ASSERT(xInv.NotZero());
476 }
477
478 virtual bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
479 {
480 return GetValueHelper<DL_PrivateKey_ECGDSA<EC>,
481 DL_PrivateKey_ECGDSA<EC> >(this, name, valueType, pValue).Assignable();
482 }
483
484 virtual void AssignFrom(const NameValuePairs &source)
485 {
486 AssignFromHelper<DL_PrivateKey_ECGDSA<EC>,
487 DL_PrivateKey_ECGDSA<EC> >(this, source);
488 }
489
490 // PKCS8PrivateKey
491 void BERDecodePrivateKey(BufferedTransformation &bt, bool parametersPresent, size_t size);
493};
494
495/// \brief Elliptic Curve German DSA key for ISO/IEC 15946
496/// \tparam EC elliptic curve field
497/// \sa ECGDSA
498/// \since Crypto++ 6.0
499template <class EC>
500class DL_PublicKey_ECGDSA : public DL_PublicKeyImpl<DL_GroupParameters_EC<EC> >
501{
503
504public:
505 typedef typename EC::Point Element;
506
507 virtual ~DL_PublicKey_ECGDSA() {}
508
509 /// \brief Initialize an EC Public Key using {GP,Q}
510 /// \param params group parameters
511 /// \param Q the public point
512 /// \details This Initialize() function overload initializes a public key from existing parameters.
513 void Initialize(const DL_GroupParameters_EC<EC> &params, const Element &Q)
514 {this->AccessGroupParameters() = params; this->SetPublicElement(Q);}
515
516 /// \brief Initialize an EC Public Key using {EC,G,n,Q}
517 /// \param ec the elliptic curve
518 /// \param G the base point
519 /// \param n the order of the base point
520 /// \param Q the public point
521 /// \details This Initialize() function overload initializes a public key from existing parameters.
522 void Initialize(const EC &ec, const Element &G, const Integer &n, const Element &Q)
523 {this->AccessGroupParameters().Initialize(ec, G, n); this->SetPublicElement(Q);}
524
525 virtual void AssignFrom(const NameValuePairs &source)
526 {
527 DL_PrivateKey_ECGDSA<EC> *pPrivateKey = NULLPTR;
528 if (source.GetThisPointer(pPrivateKey))
529 pPrivateKey->MakePublicKey(*this);
530 else
531 {
532 this->AccessAbstractGroupParameters().AssignFrom(source);
533 AssignFromHelper(this, source)
534 CRYPTOPP_SET_FUNCTION_ENTRY(PublicElement);
535 }
536 }
537
538 // DL_PublicKey<T>
539 virtual void SetPublicElement(const Element &y)
540 {this->AccessPublicPrecomputation().SetBase(this->GetAbstractGroupParameters().GetGroupPrecomputation(), y);}
541
542 // X509PublicKey
543 void BERDecodePublicKey(BufferedTransformation &bt, bool parametersPresent, size_t size);
545};
546
547/// \brief Elliptic Curve German DSA keys for ISO/IEC 15946
548/// \tparam EC elliptic curve field
549/// \sa ECGDSA
550/// \since Crypto++ 6.0
551template <class EC>
553{
556};
557
558/// \brief Elliptic Curve German DSA signature algorithm
559/// \tparam EC elliptic curve field
560/// \sa ECGDSA
561/// \since Crypto++ 6.0
562template <class EC>
563class DL_Algorithm_ECGDSA : public DL_Algorithm_GDSA_ISO15946<typename EC::Point>
564{
565public:
566 CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "ECGDSA";}
567};
568
569/// \brief Elliptic Curve German Digital Signature Algorithm signature scheme
570/// \tparam EC elliptic curve field
571/// \tparam H HashTransformation derived class
572/// \sa Erwin Hess, Marcus Schafheutle, and Pascale Serf <A
573/// HREF="http://www.teletrust.de/fileadmin/files/oid/ecgdsa_final.pdf">The Digital Signature Scheme
574/// ECGDSA (October 24, 2006)</A>
575/// \since Crypto++ 6.0
576template <class EC, class H>
577struct ECGDSA : public DL_SS<
578 DL_Keys_ECGDSA<EC>,
579 DL_Algorithm_ECGDSA<EC>,
580 DL_SignatureMessageEncodingMethod_DSA,
581 H>
582{
583 static std::string CRYPTOPP_API StaticAlgorithmName() {return std::string("ECGDSA-ISO15946/") + H::StaticAlgorithmName();}
584};
585
586// ******************************************
587
588/// \brief Elliptic Curve Integrated Encryption Scheme
589/// \tparam COFACTOR_OPTION cofactor multiplication option
590/// \tparam HASH HashTransformation derived class used for key derivation and MAC computation
591/// \tparam DHAES_MODE flag indicating if the MAC includes additional context parameters such as <em>u·V</em>, <em>v·U</em> and label
592/// \tparam LABEL_OCTETS flag indicating if the label size is specified in octets or bits
593/// \details ECIES is an Elliptic Curve based Integrated Encryption Scheme (IES). The scheme combines a Key Encapsulation
594/// Method (KEM) with a Data Encapsulation Method (DEM) and a MAC tag. The scheme is
595/// <A HREF="http://en.wikipedia.org/wiki/ciphertext_indistinguishability">IND-CCA2</A>, which is a strong notion of security.
596/// You should prefer an Integrated Encryption Scheme over homegrown schemes.
597/// \details If you desire an Integrated Encryption Scheme with Crypto++ 4.2 compatibility, then use the ECIES_P1363.
598/// If you desire an Integrated Encryption Scheme compatible with Bouncy Castle 1.54 and Botan 1.11 compatibility, then use the ECIES
599/// template class with <tt>NoCofactorMultiplication</tt>, <tt>DHAES_MODE=true</tt> and <tt>LABEL_OCTETS=false</tt>.
600/// \details The default template parameters ensure compatibility with Bouncy Castle 1.54 and Botan 1.11. The combination of
601/// <tt>IncompatibleCofactorMultiplication</tt> and <tt>DHAES_MODE=true</tt> is recommended for best efficiency and security.
602/// SHA1 is used for compatibility reasons, but it can be changed if desired.
603/// \sa DLIES, ECIES_P1363, <a href="http://www.weidai.com/scan-mirror/ca.html#ECIES">Elliptic Curve Integrated Encryption Scheme (ECIES)</a>,
604/// Martínez, Encinas, and Ávila's <A HREF="http://digital.csic.es/bitstream/10261/32671/1/V2-I2-P7-13.pdf">A Survey of the Elliptic
605/// Curve Integrated Encryption Schemes</A>
606/// \since Crypto++ 4.0, Crypto++ 5.7 for Bouncy Castle and Botan compatibility
607template <class EC, class HASH = SHA1, class COFACTOR_OPTION = NoCofactorMultiplication, bool DHAES_MODE = true, bool LABEL_OCTETS = false>
608struct ECIES
609 : public DL_ES<
610 DL_Keys_EC<EC>,
611 DL_KeyAgreementAlgorithm_DH<typename EC::Point, COFACTOR_OPTION>,
612 DL_KeyDerivationAlgorithm_P1363<typename EC::Point, DHAES_MODE, P1363_KDF2<HASH> >,
613 DL_EncryptionAlgorithm_Xor<HMAC<HASH>, DHAES_MODE, LABEL_OCTETS>,
614 ECIES<EC> >
615{
616 // TODO: fix this after name is standardized
617 CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "ECIES";}
618};
619
620/// \brief Elliptic Curve Integrated Encryption Scheme for P1363
621/// \tparam COFACTOR_OPTION cofactor multiplication option
622/// \tparam HASH HashTransformation derived class used for key derivation and MAC computation
623/// \details ECIES_P1363 is an Elliptic Curve based Integrated Encryption Scheme (IES) for P1363. The scheme combines a Key Encapsulation
624/// Method (KEM) with a Data Encapsulation Method (DEM) and a MAC tag. The scheme is
625/// <A HREF="http://en.wikipedia.org/wiki/ciphertext_indistinguishability">IND-CCA2</A>, which is a strong notion of security.
626/// You should prefer an Integrated Encryption Scheme over homegrown schemes.
627/// \details The library's original implementation is based on an early P1363 draft, which itself appears to be based on an early Certicom
628/// SEC-1 draft (or an early SEC-1 draft was based on a P1363 draft). Crypto++ 4.2 used the early draft in its Integrated Enryption
629/// Schemes with <tt>NoCofactorMultiplication</tt>, <tt>DHAES_MODE=false</tt> and <tt>LABEL_OCTETS=true</tt>.
630/// \details If you desire an Integrated Encryption Scheme with Crypto++ 4.2 compatibility, then use the ECIES_P1363.
631/// If you desire an Integrated Encryption Scheme compatible with Bouncy Castle 1.54 and Botan 1.11 compatibility, then use the ECIES
632/// template class with <tt>NoCofactorMultiplication</tt>, <tt>DHAES_MODE=true</tt> and <tt>LABEL_OCTETS=false</tt>.
633/// \details The default template parameters ensure compatibility with P1363. The combination of
634/// <tt>IncompatibleCofactorMultiplication</tt> and <tt>DHAES_MODE=true</tt> is recommended for best efficiency and security.
635/// SHA1 is used for compatibility reasons, but it can be changed if desired.
636/// \sa DLIES, ECIES, <a href="http://www.weidai.com/scan-mirror/ca.html#ECIES">Elliptic Curve Integrated Encryption Scheme (ECIES)</a>,
637/// Martínez, Encinas, and Ávila's <A HREF="http://digital.csic.es/bitstream/10261/32671/1/V2-I2-P7-13.pdf">A Survey of the Elliptic
638/// Curve Integrated Encryption Schemes</A>
639/// \since Crypto++ 4.0
640template <class EC, class HASH = SHA1, class COFACTOR_OPTION = NoCofactorMultiplication>
642 : public DL_ES<
643 DL_Keys_EC<EC>,
644 DL_KeyAgreementAlgorithm_DH<typename EC::Point, COFACTOR_OPTION>,
645 DL_KeyDerivationAlgorithm_P1363<typename EC::Point, false, P1363_KDF2<HASH> >,
646 DL_EncryptionAlgorithm_Xor<HMAC<HASH>, false, true>,
647 ECIES<EC> >
648{
649 // TODO: fix this after name is standardized
650 CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "ECIES-P1363";}
651};
652
653NAMESPACE_END
654
655#ifdef CRYPTOPP_MANUALLY_INSTANTIATE_TEMPLATES
656#include "eccrypto.cpp"
657#endif
658
659NAMESPACE_BEGIN(CryptoPP)
660
679
680NAMESPACE_END
681
682#if CRYPTOPP_MSC_VERSION
683# pragma warning(pop)
684#endif
685
686#endif
Classes and functions for working with ANS.1 objects.
std::ostream & operator<<(std::ostream &out, const OID &oid)
Print a OID value.
Definition: asn.h:939
Interface for buffered transformations.
Definition: cryptlib.h:1652
Diffie-Hellman domain.
Definition: dh.h:26
DSA signature algorithm based on RFC 6979.
Definition: gfpcrypt.h:347
Elliptic Curve DSA (ECDSA) signature algorithm based on RFC 6979.
Definition: eccrypto.h:357
Elliptic Curve DSA (ECDSA) signature algorithm.
Definition: eccrypto.h:345
Elliptic Curve German DSA signature algorithm.
Definition: eccrypto.h:564
Elliptic Curve NR (ECNR) signature algorithm.
Definition: eccrypto.h:366
German Digital Signature Algorithm.
Definition: gfpcrypt.h:506
GDSA algorithm.
Definition: gfpcrypt.h:309
NR algorithm.
Definition: gfpcrypt.h:548
Exception thrown when an invalid group element is encountered.
Definition: pubkey.h:772
Discrete Log (DL) encryption scheme.
Definition: pubkey.h:2362
DL_FixedBasePrecomputation interface.
Definition: eprecomp.h:61
Elliptic Curve Parameters.
Definition: eccrypto.h:40
DL_GroupParameters_EC(const OID &oid)
Construct an EC GroupParameters.
Definition: eccrypto.h:56
Integer GetCofactor() const
Retrieves the cofactor.
void Initialize(const OID &oid)
Initialize a DL_GroupParameters_EC {EC,G,n,k}.
void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg)
this implementation doesn't actually generate a curve, it just initializes the parameters with existi...
virtual unsigned int GetEncodedElementSize(bool reversible) const
Retrieves the encoded element's size.
Definition: eccrypto.h:115
bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
Get a named value.
Element DecodeElement(const byte *encoded, bool checkForGroupMembership) const
Decodes the element.
Definition: eccrypto.h:122
const Integer & GetSubgroupOrder() const
Retrieves the subgroup order.
Definition: eccrypto.h:103
DL_FixedBasePrecomputation< Element > & AccessBasePrecomputation()
Retrieves the group precomputation.
Definition: eccrypto.h:102
void AssignFrom(const NameValuePairs &source)
Assign values to this object.
DL_GroupParameters_EC()
Construct an EC GroupParameters.
Definition: eccrypto.h:52
const DL_FixedBasePrecomputation< Element > & GetBasePrecomputation() const
Retrieves the group precomputation.
Definition: eccrypto.h:101
bool ValidateGroup(RandomNumberGenerator &rng, unsigned int level) const
Check the group for errors.
Integer GetMaxExponent() const
Retrieves the maximum exponent for the group.
Definition: eccrypto.h:132
void Initialize(const EllipticCurve &ec, const Point &G, const Integer &n, const Integer &k=Integer::Zero())
Initialize an EC GroupParameters using {EC,G,n,k}.
Definition: eccrypto.h:78
DL_GroupParameters_EC(const EllipticCurve &ec, const Point &G, const Integer &n, const Integer &k=Integer::Zero())
Construct an EC GroupParameters.
Definition: eccrypto.h:64
DL_GroupParameters_EC(BufferedTransformation &bt)
Construct an EC GroupParameters.
Definition: eccrypto.h:69
Interface for Discrete Log (DL) group parameters.
Definition: pubkey.h:782
virtual void SetSubgroupGenerator(const Element &base)
Sets the subgroup generator.
Definition: pubkey.h:864
virtual const Integer & GetSubgroupOrder() const =0
Retrieves the subgroup order.
virtual Element ExponentiateBase(const Integer &exponent) const
Exponentiates the base.
Definition: pubkey.h:869
Base implementation of Discrete Log (DL) group parameters.
Definition: pubkey.h:1014
Elliptic Curve German DSA key for ISO/IEC 15946.
Definition: eccrypto.h:419
void Initialize(RandomNumberGenerator &rng, const EC &ec, const Element &G, const Integer &n)
Create an EC private key.
Definition: eccrypto.h:466
void BERDecodePrivateKey(BufferedTransformation &bt, bool parametersPresent, size_t size)
Decode privateKey part of privateKeyInfo.
virtual void AssignFrom(const NameValuePairs &source)
Assign values to this object.
Definition: eccrypto.h:484
void Initialize(const DL_GroupParameters_EC< EC > &params, const Integer &x)
Initialize an EC Private Key using {GP,x}.
Definition: eccrypto.h:429
void Initialize(RandomNumberGenerator &rng, const DL_GroupParameters_EC< EC > &params)
Create an EC private key.
Definition: eccrypto.h:455
void DEREncodePrivateKey(BufferedTransformation &bt) const
Encode privateKey part of privateKeyInfo.
virtual bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
Get a named value.
Definition: eccrypto.h:478
void Initialize(const EC &ec, const Element &G, const Integer &n, const Integer &x)
Initialize an EC Private Key using {EC,G,n,x}.
Definition: eccrypto.h:442
Elliptic Curve Discrete Log (DL) private key.
Definition: eccrypto.h:210
void DEREncodePrivateKey(BufferedTransformation &bt) const
Encode privateKey part of privateKeyInfo.
void BERDecodePrivateKey(BufferedTransformation &bt, bool parametersPresent, size_t size)
Decode privateKey part of privateKeyInfo.
void Initialize(RandomNumberGenerator &rng, const DL_GroupParameters_EC< EC > &params)
Create an EC private key.
Definition: eccrypto.h:238
void Initialize(const DL_GroupParameters_EC< EC > &params, const Integer &x)
Initialize an EC Private Key using {GP,x}.
Definition: eccrypto.h:220
void Initialize(const EC &ec, const Element &G, const Integer &n, const Integer &x)
Initialize an EC Private Key using {EC,G,n,x}.
Definition: eccrypto.h:229
void Initialize(RandomNumberGenerator &rng, const EC &ec, const Element &G, const Integer &n)
Create an EC private key.
Definition: eccrypto.h:249
Discrete Log (DL) private key base implementation.
Definition: pubkey.h:1239
const DL_GroupParameters< Element > & GetAbstractGroupParameters() const
Definition: pubkey.h:1296
const Integer & GetPrivateExponent() const
Definition: pubkey.h:1300
void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &params)
Definition: pubkey.h:1276
Elliptic Curve German DSA key for ISO/IEC 15946.
Definition: eccrypto.h:501
void Initialize(const EC &ec, const Element &G, const Integer &n, const Element &Q)
Initialize an EC Public Key using {EC,G,n,Q}.
Definition: eccrypto.h:522
void Initialize(const DL_GroupParameters_EC< EC > &params, const Element &Q)
Initialize an EC Public Key using {GP,Q}.
Definition: eccrypto.h:513
void BERDecodePublicKey(BufferedTransformation &bt, bool parametersPresent, size_t size)
Decode subjectPublicKey part of subjectPublicKeyInfo.
void DEREncodePublicKey(BufferedTransformation &bt) const
Encode subjectPublicKey part of subjectPublicKeyInfo.
virtual void AssignFrom(const NameValuePairs &source)
Assign values to this object.
Definition: eccrypto.h:525
Elliptic Curve Discrete Log (DL) public key.
Definition: eccrypto.h:179
void DEREncodePublicKey(BufferedTransformation &bt) const
Encode subjectPublicKey part of subjectPublicKeyInfo.
void Initialize(const EC &ec, const Element &G, const Integer &n, const Element &Q)
Initialize an EC Public Key using {EC,G,n,Q}.
Definition: eccrypto.h:198
void BERDecodePublicKey(BufferedTransformation &bt, bool parametersPresent, size_t size)
Decode subjectPublicKey part of subjectPublicKeyInfo.
void Initialize(const DL_GroupParameters_EC< EC > &params, const Element &Q)
Initialize an EC Public Key using {GP,Q}.
Definition: eccrypto.h:189
virtual void SetPublicElement(const Element &y)
Sets the public element.
Definition: pubkey.h:1093
Discrete Log (DL) public key base implementation.
Definition: pubkey.h:1336
DL_FixedBasePrecomputation< Element > & AccessPublicPrecomputation()
Definition: pubkey.h:1388
const DL_GroupParameters< Element > & GetAbstractGroupParameters() const
Definition: pubkey.h:1383
DL_GroupParameters< Element > & AccessAbstractGroupParameters()
Retrieves abstract group parameters.
Definition: pubkey.h:1384
Discrete Log (DL) signature scheme.
Definition: pubkey.h:2342
Fully Hashed Menezes-Qu-Vanstone in GF(p)
Definition: fhmqv.h:25
Hashed Menezes-Qu-Vanstone in GF(p)
Definition: hmqv.h:24
Multiple precision integer with arithmetic operations.
Definition: integer.h:50
bool NotZero() const
Determines if the Integer is non-0.
Definition: integer.h:338
static const Integer & Zero()
Integer representing 0.
unsigned int ByteCount() const
Determines the number of bytes required to represent the Integer.
Integer InverseMod(const Integer &n) const
Calculate multiplicative inverse.
MQV domain for performing authenticated key agreement.
Definition: mqv.h:29
Interface for retrieving values given their names.
Definition: cryptlib.h:322
bool GetThisPointer(T *&ptr) const
Get a pointer to this object.
Definition: cryptlib.h:366
Object Identifier.
Definition: asn.h:265
Interface for random number generators.
Definition: cryptlib.h:1435
SHA-1 message digest.
Definition: sha.h:27
SHA-256 message digest.
Definition: sha.h:65
SHA-384 message digest.
Definition: sha.h:177
SHA-512 message digest.
Definition: sha.h:142
Library configuration file.
#define CRYPTOPP_API
Win32 calling convention.
Definition: config_dll.h:119
#define CRYPTOPP_DLL_TEMPLATE_CLASS
Instantiate templates in a dynamic library.
Definition: config_dll.h:72
Abstract base classes that provide a uniform interface to this library.
Classes for Diffie-Hellman key exchange.
Classes for Elliptic Curves over binary fields.
Classes for Elliptic Curves over prime fields.
Classes for Fully Hashed Menezes-Qu-Vanstone key agreement in GF(p)
Classes and functions for schemes based on Discrete Logs (DL) over GF(p)
Classes for HMAC message authentication codes.
Classes for Hashed Menezes-Qu-Vanstone key agreement in GF(p)
Multiple precision integer with arithmetic operations.
Classes for Menezes–Qu–Vanstone (MQV) key agreement.
Crypto++ library namespace.
const char * PublicElement()
Integer.
Definition: argnames.h:36
This file contains helper classes/functions for implementing public key algorithms.
Classes for SHA-1 and SHA-2 family of message digests.
Elliptic Curve DSA keys.
Definition: eccrypto.h:335
Elliptic Curve German DSA keys for ISO/IEC 15946.
Definition: eccrypto.h:553
Elliptic Curve Discrete Log (DL) keys.
Definition: eccrypto.h:321
Elliptic Curve Diffie-Hellman.
Definition: eccrypto.h:268
Elliptic Curve DSA (ECDSA) deterministic signature scheme.
Definition: eccrypto.h:394
Elliptic Curve DSA (ECDSA) signature scheme.
Definition: eccrypto.h:378
Fully Hashed Elliptic Curve Menezes-Qu-Vanstone.
Definition: eccrypto.h:308
Elliptic Curve German Digital Signature Algorithm signature scheme.
Definition: eccrypto.h:582
Hashed Elliptic Curve Menezes-Qu-Vanstone.
Definition: eccrypto.h:290
Elliptic Curve Integrated Encryption Scheme for P1363.
Definition: eccrypto.h:648
Elliptic Curve Integrated Encryption Scheme.
Definition: eccrypto.h:615
Elliptic Curve Menezes-Qu-Vanstone.
Definition: eccrypto.h:278
Elliptic Curve NR (ECNR) signature scheme.
Definition: eccrypto.h:403
Converts an enumeration to a type suitable for use as a template parameter.
Definition: cryptlib.h:136
#define CRYPTOPP_ASSERT(exp)
Debugging and diagnostic assertion.
Definition: trap.h:68