Crypto++ 8.7
Free C++ class library of cryptographic schemes
Classes | Public Types | Public Member Functions | List of all members
RingOfPolynomialsOver< T > Class Template Reference

Ring of polynomials over another ring. More...

#include <polynomi.h>

+ Inheritance diagram for RingOfPolynomialsOver< T >:

Classes

class  InterpolationFailed
 

Public Types

typedef T CoefficientRing
 
typedef PolynomialOver< T > Element
 
typedef Element::CoefficientType CoefficientType
 
typedef Element::RandomizationParameter RandomizationParameter
 
- Public Types inherited from AbstractEuclideanDomain< PolynomialOver< T > >
typedef PolynomialOver< T > Element
 
- Public Types inherited from AbstractRing< PolynomialOver< T > >
typedef PolynomialOver< T > Element
 
- Public Types inherited from AbstractGroup< PolynomialOver< T > >
typedef PolynomialOver< T > Element
 

Public Member Functions

 RingOfPolynomialsOver (const CoefficientRing &ring)
 
Element RandomElement (RandomNumberGenerator &rng, const RandomizationParameter &parameter)
 
bool Equal (const Element &a, const Element &b) const
 Compare two elements for equality. More...
 
const ElementIdentity () const
 Provides the Identity element. More...
 
const ElementAdd (const Element &a, const Element &b) const
 Adds elements in the group. More...
 
ElementAccumulate (Element &a, const Element &b) const
 TODO. More...
 
const ElementInverse (const Element &a) const
 Inverts the element in the group. More...
 
const ElementSubtract (const Element &a, const Element &b) const
 Subtracts elements in the group. More...
 
ElementReduce (Element &a, const Element &b) const
 Reduces an element in the congruence class. More...
 
const ElementDouble (const Element &a) const
 Doubles an element in the group. More...
 
const ElementMultiplicativeIdentity () const
 Retrieves the multiplicative identity. More...
 
const ElementMultiply (const Element &a, const Element &b) const
 Multiplies elements in the group. More...
 
const ElementSquare (const Element &a) const
 Square an element in the group. More...
 
bool IsUnit (const Element &a) const
 Determines whether an element is a unit in the group. More...
 
const ElementMultiplicativeInverse (const Element &a) const
 Calculate the multiplicative inverse of an element in the group. More...
 
const ElementDivide (const Element &a, const Element &b) const
 Divides elements in the group. More...
 
const ElementMod (const Element &a, const Element &b) const
 Performs a modular reduction in the ring. More...
 
void DivisionAlgorithm (Element &r, Element &q, const Element &a, const Element &d) const
 Performs the division algorithm on two elements in the ring. More...
 
Element Interpolate (const CoefficientType x[], const CoefficientType y[], unsigned int n) const
 
CoefficientType InterpolateAt (const CoefficientType &position, const CoefficientType x[], const CoefficientType y[], unsigned int n) const
 
- Public Member Functions inherited from AbstractEuclideanDomain< PolynomialOver< T > >
virtual void DivisionAlgorithm (Element &r, Element &q, const Element &a, const Element &d) const=0
 Performs the division algorithm on two elements in the ring. More...
 
virtual const ElementMod (const Element &a, const Element &b) const=0
 Performs a modular reduction in the ring. More...
 
virtual const ElementGcd (const Element &a, const Element &b) const
 Calculates the greatest common denominator in the ring. More...
 
- Public Member Functions inherited from AbstractRing< PolynomialOver< T > >
 AbstractRing ()
 Construct an AbstractRing. More...
 
 AbstractRing (const AbstractRing &source)
 Copy construct an AbstractRing. More...
 
AbstractRingoperator= (const AbstractRing &source)
 Assign an AbstractRing. More...
 
virtual bool IsUnit (const Element &a) const=0
 Determines whether an element is a unit in the group. More...
 
virtual const ElementMultiplicativeIdentity () const=0
 Retrieves the multiplicative identity. More...
 
virtual const ElementMultiply (const Element &a, const Element &b) const=0
 Multiplies elements in the group. More...
 
virtual const ElementMultiplicativeInverse (const Element &a) const=0
 Calculate the multiplicative inverse of an element in the group. More...
 
virtual const ElementSquare (const Element &a) const
 Square an element in the group. More...
 
virtual const ElementDivide (const Element &a, const Element &b) const
 Divides elements in the group. More...
 
virtual Element Exponentiate (const Element &a, const Integer &e) const
 Raises a base to an exponent in the group. More...
 
virtual Element CascadeExponentiate (const Element &x, const Integer &e1, const Element &y, const Integer &e2) const
 TODO. More...
 
virtual void SimultaneousExponentiate (Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const
 Exponentiates a base to multiple exponents in the Ring. More...
 
virtual const AbstractGroup< PolynomialOver< T > > & MultiplicativeGroup () const
 Retrieves the multiplicative group. More...
 
- Public Member Functions inherited from AbstractGroup< PolynomialOver< T > >
virtual bool Equal (const Element &a, const Element &b) const=0
 Compare two elements for equality. More...
 
virtual const ElementIdentity () const=0
 Provides the Identity element. More...
 
virtual const ElementAdd (const Element &a, const Element &b) const=0
 Adds elements in the group. More...
 
virtual const ElementInverse (const Element &a) const=0
 Inverts the element in the group. More...
 
virtual bool InversionIsFast () const
 Determine if inversion is fast. More...
 
virtual const ElementDouble (const Element &a) const
 Doubles an element in the group. More...
 
virtual const ElementSubtract (const Element &a, const Element &b) const
 Subtracts elements in the group. More...
 
virtual ElementAccumulate (Element &a, const Element &b) const
 TODO. More...
 
virtual ElementReduce (Element &a, const Element &b) const
 Reduces an element in the congruence class. More...
 
virtual Element ScalarMultiply (const Element &a, const Integer &e) const
 Performs a scalar multiplication. More...
 
virtual Element CascadeScalarMultiply (const Element &x, const Integer &e1, const Element &y, const Integer &e2) const
 TODO. More...
 
virtual void SimultaneousMultiply (Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const
 Multiplies a base to multiple exponents in a group. More...
 

Detailed Description

template<class T>
class RingOfPolynomialsOver< T >

Ring of polynomials over another ring.

Definition at line 314 of file polynomi.h.

Member Typedef Documentation

◆ CoefficientRing

template<class T >
typedef T RingOfPolynomialsOver< T >::CoefficientRing

Definition at line 317 of file polynomi.h.

◆ Element

template<class T >
typedef PolynomialOver<T> RingOfPolynomialsOver< T >::Element

Definition at line 318 of file polynomi.h.

◆ CoefficientType

template<class T >
typedef Element::CoefficientType RingOfPolynomialsOver< T >::CoefficientType

Definition at line 319 of file polynomi.h.

◆ RandomizationParameter

template<class T >
typedef Element::RandomizationParameter RingOfPolynomialsOver< T >::RandomizationParameter

Definition at line 320 of file polynomi.h.

Constructor & Destructor Documentation

◆ RingOfPolynomialsOver()

template<class T >
RingOfPolynomialsOver< T >::RingOfPolynomialsOver ( const CoefficientRing &  ring)
inline

Definition at line 322 of file polynomi.h.

Member Function Documentation

◆ RandomElement()

template<class T >
Element RingOfPolynomialsOver< T >::RandomElement ( RandomNumberGenerator rng,
const RandomizationParameter parameter 
)
inline

Definition at line 324 of file polynomi.h.

◆ Equal()

template<class T >
bool RingOfPolynomialsOver< T >::Equal ( const Element a,
const Element b 
) const
inlinevirtual

Compare two elements for equality.

Parameters
afirst element
bsecond element
Returns
true if the elements are equal, false otherwise

Equal() tests the elements for equality using a==b

Implements AbstractGroup< PolynomialOver< T > >.

Definition at line 327 of file polynomi.h.

◆ Identity()

template<class T >
const Element & RingOfPolynomialsOver< T >::Identity ( ) const
inlinevirtual

Provides the Identity element.

Returns
the Identity element

Implements AbstractGroup< PolynomialOver< T > >.

Definition at line 330 of file polynomi.h.

◆ Add()

template<class T >
const Element & RingOfPolynomialsOver< T >::Add ( const Element a,
const Element b 
) const
inlinevirtual

Adds elements in the group.

Parameters
afirst element
bsecond element
Returns
the sum of a and b

Implements AbstractGroup< PolynomialOver< T > >.

Definition at line 333 of file polynomi.h.

◆ Accumulate()

template<class T >
Element & RingOfPolynomialsOver< T >::Accumulate ( Element a,
const Element b 
) const
inlinevirtual

TODO.

Parameters
afirst element
bsecond element
Returns
TODO

Reimplemented from AbstractGroup< PolynomialOver< T > >.

Definition at line 336 of file polynomi.h.

◆ Inverse()

template<class T >
const Element & RingOfPolynomialsOver< T >::Inverse ( const Element a) const
inlinevirtual

Inverts the element in the group.

Parameters
afirst element
Returns
the inverse of the element

Implements AbstractGroup< PolynomialOver< T > >.

Definition at line 339 of file polynomi.h.

◆ Subtract()

template<class T >
const Element & RingOfPolynomialsOver< T >::Subtract ( const Element a,
const Element b 
) const
inlinevirtual

Subtracts elements in the group.

Parameters
afirst element
bsecond element
Returns
the difference of a and b. The element a must provide a Subtract member function.

Reimplemented from AbstractGroup< PolynomialOver< T > >.

Definition at line 342 of file polynomi.h.

◆ Reduce()

template<class T >
Element & RingOfPolynomialsOver< T >::Reduce ( Element a,
const Element b 
) const
inlinevirtual

Reduces an element in the congruence class.

Parameters
aelement to reduce
bthe congruence class
Returns
the reduced element

Reimplemented from AbstractGroup< PolynomialOver< T > >.

Definition at line 345 of file polynomi.h.

◆ Double()

template<class T >
const Element & RingOfPolynomialsOver< T >::Double ( const Element a) const
inlinevirtual

Doubles an element in the group.

Parameters
athe element
Returns
the element doubled

Reimplemented from AbstractGroup< PolynomialOver< T > >.

Definition at line 348 of file polynomi.h.

◆ MultiplicativeIdentity()

template<class T >
const Element & RingOfPolynomialsOver< T >::MultiplicativeIdentity ( ) const
inlinevirtual

Retrieves the multiplicative identity.

Returns
the multiplicative identity

Implements AbstractRing< PolynomialOver< T > >.

Definition at line 351 of file polynomi.h.

◆ Multiply()

template<class T >
const Element & RingOfPolynomialsOver< T >::Multiply ( const Element a,
const Element b 
) const
inlinevirtual

Multiplies elements in the group.

Parameters
athe multiplicand
bthe multiplier
Returns
the product of a and b

Implements AbstractRing< PolynomialOver< T > >.

Definition at line 354 of file polynomi.h.

◆ Square()

template<class T >
const Element & RingOfPolynomialsOver< T >::Square ( const Element a) const
inlinevirtual

Square an element in the group.

Parameters
athe element
Returns
the element squared

Reimplemented from AbstractRing< PolynomialOver< T > >.

Definition at line 357 of file polynomi.h.

◆ IsUnit()

template<class T >
bool RingOfPolynomialsOver< T >::IsUnit ( const Element a) const
inlinevirtual

Determines whether an element is a unit in the group.

Parameters
athe element
Returns
true if the element is a unit after reduction, false otherwise.

Implements AbstractRing< PolynomialOver< T > >.

Definition at line 360 of file polynomi.h.

◆ MultiplicativeInverse()

template<class T >
const Element & RingOfPolynomialsOver< T >::MultiplicativeInverse ( const Element a) const
inlinevirtual

Calculate the multiplicative inverse of an element in the group.

Parameters
athe element

Implements AbstractRing< PolynomialOver< T > >.

Definition at line 363 of file polynomi.h.

◆ Divide()

template<class T >
const Element & RingOfPolynomialsOver< T >::Divide ( const Element a,
const Element b 
) const
inlinevirtual

Divides elements in the group.

Parameters
athe dividend
bthe divisor
Returns
the quotient

Reimplemented from AbstractRing< PolynomialOver< T > >.

Definition at line 366 of file polynomi.h.

◆ Mod()

template<class T >
const Element & RingOfPolynomialsOver< T >::Mod ( const Element a,
const Element b 
) const
inlinevirtual

Performs a modular reduction in the ring.

Parameters
athe element
bthe modulus
Returns
the result of ab.

Implements AbstractEuclideanDomain< PolynomialOver< T > >.

Definition at line 369 of file polynomi.h.

◆ DivisionAlgorithm()

template<class T >
void RingOfPolynomialsOver< T >::DivisionAlgorithm ( Element r,
Element q,
const Element a,
const Element d 
) const
inlinevirtual

Performs the division algorithm on two elements in the ring.

Parameters
rthe remainder
qthe quotient
athe dividend
dthe divisor

Implements AbstractEuclideanDomain< PolynomialOver< T > >.

Definition at line 372 of file polynomi.h.

◆ Interpolate()

template<class T >
RingOfPolynomialsOver< T >::Element RingOfPolynomialsOver< T >::Interpolate ( const CoefficientType  x[],
const CoefficientType  y[],
unsigned int  n 
) const

Definition at line 476 of file polynomi.cpp.

◆ InterpolateAt()

template<class T >
RingOfPolynomialsOver< T >::CoefficientType RingOfPolynomialsOver< T >::InterpolateAt ( const CoefficientType &  position,
const CoefficientType  x[],
const CoefficientType  y[],
unsigned int  n 
) const

Definition at line 498 of file polynomi.cpp.


The documentation for this class was generated from the following files: