Crypto++ 8.7
Free C++ class library of cryptographic schemes
|
Abstract ring. More...
#include <algebra.h>
Public Types | |
typedef T | Element |
Public Types inherited from AbstractGroup< T > | |
typedef T | Element |
Public Member Functions | |
AbstractRing () | |
Construct an AbstractRing. More... | |
AbstractRing (const AbstractRing &source) | |
Copy construct an AbstractRing. More... | |
AbstractRing & | operator= (const AbstractRing &source) |
Assign an AbstractRing. More... | |
virtual bool | IsUnit (const Element &a) const =0 |
Determines whether an element is a unit in the group. More... | |
virtual const Element & | MultiplicativeIdentity () const =0 |
Retrieves the multiplicative identity. More... | |
virtual const Element & | Multiply (const Element &a, const Element &b) const =0 |
Multiplies elements in the group. More... | |
virtual const Element & | MultiplicativeInverse (const Element &a) const =0 |
Calculate the multiplicative inverse of an element in the group. More... | |
virtual const Element & | Square (const Element &a) const |
Square an element in the group. More... | |
virtual const Element & | Divide (const Element &a, const Element &b) const |
Divides elements in the group. More... | |
virtual Element | Exponentiate (const Element &a, const Integer &e) const |
Raises a base to an exponent in the group. More... | |
virtual Element | CascadeExponentiate (const Element &x, const Integer &e1, const Element &y, const Integer &e2) const |
TODO. More... | |
virtual void | SimultaneousExponentiate (Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const |
Exponentiates a base to multiple exponents in the Ring. More... | |
virtual const AbstractGroup< T > & | MultiplicativeGroup () const |
Retrieves the multiplicative group. More... | |
Public Member Functions inherited from AbstractGroup< T > | |
virtual bool | Equal (const Element &a, const Element &b) const =0 |
Compare two elements for equality. More... | |
virtual const Element & | Identity () const =0 |
Provides the Identity element. More... | |
virtual const Element & | Add (const Element &a, const Element &b) const =0 |
Adds elements in the group. More... | |
virtual const Element & | Inverse (const Element &a) const =0 |
Inverts the element in the group. More... | |
virtual bool | InversionIsFast () const |
Determine if inversion is fast. More... | |
virtual const Element & | Double (const Element &a) const |
Doubles an element in the group. More... | |
virtual const Element & | Subtract (const Element &a, const Element &b) const |
Subtracts elements in the group. More... | |
virtual Element & | Accumulate (Element &a, const Element &b) const |
TODO. More... | |
virtual Element & | Reduce (Element &a, const Element &b) const |
Reduces an element in the congruence class. More... | |
virtual Element | ScalarMultiply (const Element &a, const Integer &e) const |
Performs a scalar multiplication. More... | |
virtual Element | CascadeScalarMultiply (const Element &x, const Integer &e1, const Element &y, const Integer &e2) const |
TODO. More... | |
virtual void | SimultaneousMultiply (Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const |
Multiplies a base to multiple exponents in a group. More... | |
Abstract ring.
T | element class or type |
const Element&
returned by member functions are references to internal data members. Since each object may have only one such data member for holding results, the following code will produce incorrect results:
abcd = group.Add(group.Add(a,b), group.Add(c,d));
But this should be fine:
abcd = group.Add(a, group.Add(b, group.Add(c,d));
typedef T AbstractRing< T >::Element |
|
inline |
Construct an AbstractRing.
|
inline |
Copy construct an AbstractRing.
source | other AbstractRing |
|
inline |
Assign an AbstractRing.
source | other AbstractRing |
|
pure virtual |
Determines whether an element is a unit in the group.
a | the element |
Implemented in EuclideanDomainOf< T >, EuclideanDomainOf< PolynomialMod2 >, QuotientRing< T >, QuotientRing< EuclideanDomainOf< PolynomialMod2 > >, GF2NP, RingOfPolynomialsOver< T >, GFP2_ONB< F >, and ModularArithmetic.
|
pure virtual |
Retrieves the multiplicative identity.
Implemented in EuclideanDomainOf< T >, EuclideanDomainOf< PolynomialMod2 >, QuotientRing< T >, QuotientRing< EuclideanDomainOf< PolynomialMod2 > >, ModularArithmetic, MontgomeryRepresentation, RingOfPolynomialsOver< T >, and GFP2_ONB< F >.
|
pure virtual |
Multiplies elements in the group.
a | the multiplicand |
b | the multiplier |
Implemented in EuclideanDomainOf< T >, EuclideanDomainOf< PolynomialMod2 >, QuotientRing< T >, QuotientRing< EuclideanDomainOf< PolynomialMod2 > >, GF2NT, GF2NT233, RingOfPolynomialsOver< T >, GFP2_ONB< F >, ModularArithmetic, and MontgomeryRepresentation.
|
pure virtual |
Calculate the multiplicative inverse of an element in the group.
a | the element |
Implemented in EuclideanDomainOf< T >, EuclideanDomainOf< PolynomialMod2 >, QuotientRing< T >, QuotientRing< EuclideanDomainOf< PolynomialMod2 > >, GF2NT, RingOfPolynomialsOver< T >, GFP2_ONB< F >, ModularArithmetic, and MontgomeryRepresentation.
|
virtual |
Square an element in the group.
a | the element |
Reimplemented in EuclideanDomainOf< T >, EuclideanDomainOf< PolynomialMod2 >, QuotientRing< T >, QuotientRing< EuclideanDomainOf< PolynomialMod2 > >, GF2NT, GF2NT233, RingOfPolynomialsOver< T >, GFP2_ONB< F >, ModularArithmetic, and MontgomeryRepresentation.
Definition at line 37 of file algebra.cpp.
|
virtual |
Divides elements in the group.
a | the dividend |
b | the divisor |
Reimplemented in EuclideanDomainOf< T >, EuclideanDomainOf< PolynomialMod2 >, RingOfPolynomialsOver< T >, and ModularArithmetic.
Definition at line 42 of file algebra.cpp.
|
virtual |
Raises a base to an exponent in the group.
a | the base |
e | the exponent |
Reimplemented in GFP2_ONB< F >.
Definition at line 316 of file algebra.cpp.
|
virtual |
TODO.
x | first element |
e1 | first exponent |
y | second element |
e2 | second exponent |
Reimplemented in ModularArithmetic, and MontgomeryRepresentation.
Definition at line 323 of file algebra.cpp.
|
virtual |
Exponentiates a base to multiple exponents in the Ring.
results | an array of Elements |
base | the base to raise to the exponents |
exponents | an array of exponents |
exponentsCount | the number of exponents in the array |
SimultaneousExponentiate() raises the base to each exponent in the exponents array and stores the result at the respective position in the results array.
SimultaneousExponentiate() must be implemented in a derived class.
COUNTOF(results) == exponentsCount
COUNTOF(exponents) == exponentsCount
Reimplemented in ModularArithmetic, and MontgomeryRepresentation.
Definition at line 334 of file algebra.cpp.
|
inlinevirtual |