5#ifndef CRYPTOPP_ALGEBRA_CPP
6#define CRYPTOPP_ALGEBRA_CPP
15template <class T> const T&
AbstractGroup<T>::Double(const Element &a)
const
17 return this->Add(a, a);
24 return this->Add(a1, Inverse(b));
29 return a = this->Add(a, b);
34 return a = this->Subtract(a, b);
39 return this->Multiply(a, a);
46 return this->Multiply(a1, this->MultiplicativeInverse(b));
52 this->DivisionAlgorithm(result, q, a, b);
59 unsigned int i0=0, i1=1, i2=2;
61 while (!this->Equal(g[i1], this->
Identity()))
63 g[i2] = this->Mod(g[i0], g[i1]);
64 unsigned int t = i0; i0 = i1; i1 = i2; i2 = t;
67 return result = g[i0];
72 Element g[3]={m_modulus, a};
73 Element v[3]={m_domain.Identity(), m_domain.MultiplicativeIdentity()};
75 unsigned int i0=0, i1=1, i2=2;
77 while (!this->Equal(g[i1], this->
Identity()))
81 m_domain.DivisionAlgorithm(g[i2], y, g[i0], g[i1]);
83 v[i2] = m_domain.Subtract(v[i0], m_domain.Multiply(v[i1], y));
84 unsigned int t = i0; i0 = i1; i1 = i2; i2 = t;
87 return m_domain.IsUnit(g[i0]) ? m_domain.Divide(v[i0], g[i0]) : m_domain.Identity();
93 this->SimultaneousMultiply(&result, base, &exponent, 1);
103 const unsigned w = (expLen <= 46 ? 1 : (expLen <= 260 ? 2 : 3));
104 const unsigned tableSize = 1<<w;
105 std::vector<Element> powerTable(tableSize << w);
108 powerTable[tableSize] = y;
110 powerTable[3] = this->Add(x,y);
113 powerTable[2] = this->Double(x);
114 powerTable[2*tableSize] = this->Double(y);
118 for (i=3; i<tableSize; i+=2)
119 powerTable[i] = Add(powerTable[i-2], powerTable[2]);
120 for (i=1; i<tableSize; i+=2)
121 for (j=i+tableSize; j<(tableSize<<w); j+=tableSize)
122 powerTable[j] = Add(powerTable[j-tableSize], y);
124 for (i=3*tableSize; i<(tableSize<<w); i+=2*tableSize)
125 powerTable[i] = Add(powerTable[i-2*tableSize], powerTable[2*tableSize]);
126 for (i=tableSize; i<(tableSize<<w); i+=2*tableSize)
127 for (j=i+2; j<i+tableSize; j+=2)
128 powerTable[j] = Add(powerTable[j-1], x);
132 unsigned power1 = 0, power2 = 0, prevPosition = expLen-1;
133 bool firstTime =
true;
135 for (
int i = expLen-1; i>=0; i--)
137 power1 = 2*power1 + e1.
GetBit(i);
138 power2 = 2*power2 + e2.
GetBit(i);
140 if (i==0 || 2*power1 >= tableSize || 2*power2 >= tableSize)
142 unsigned squaresBefore = prevPosition-i;
143 unsigned squaresAfter = 0;
145 while ((power1 || power2) && power1%2 == 0 && power2%2==0)
154 result = powerTable[(power2<<w) + power1];
159 while (squaresBefore--)
160 result = this->Double(result);
161 if (power1 || power2)
162 Accumulate(result, powerTable[(power2<<w) + power1]);
164 while (squaresAfter--)
165 result = this->Double(result);
172template <
class Element,
class Iterator> Element GeneralCascadeMultiplication(
const AbstractGroup<Element> &group, Iterator begin, Iterator end)
176 else if (end-begin == 2)
177 return group.
CascadeScalarMultiply(begin->base, begin->exponent, (begin+1)->base, (begin+1)->exponent);
184 std::make_heap(begin, end);
185 std::pop_heap(begin, end);
187 while (!!begin->exponent)
198 std::push_heap(begin, end);
199 std::pop_heap(begin, end);
209 : exp(expIn), windowModulus(
Integer::One()), windowSize(windowSizeIn), windowBegin(0), expWindow(0)
210 , fastNegate(fastNegate), negateNext(
false), firstTime(
true), finished(
false)
214 unsigned int expLen = exp.
BitCount();
215 windowSize = expLen <= 17 ? 1 : (expLen <= 24 ? 2 : (expLen <= 70 ? 3 : (expLen <= 197 ? 4 : (expLen <= 539 ? 5 : (expLen <= 1434 ? 6 : 7)))));
217 windowModulus <<= windowSize;
220 void FindNextWindow()
223 unsigned int skipCount = firstTime ? 0 : windowSize;
225 while (!exp.
GetBit(skipCount))
227 if (skipCount >= expLen)
236 windowBegin += skipCount;
237 expWindow =
word32(exp % (
word(1) << windowSize));
239 if (fastNegate && exp.
GetBit(windowSize))
242 expWindow = (
word32(1) << windowSize) - expWindow;
243 exp += windowModulus;
250 unsigned int windowSize, windowBegin;
252 bool fastNegate, negateNext, firstTime, finished;
258 std::vector<std::vector<Element> > buckets(expCount);
259 std::vector<WindowSlider> exponents;
260 exponents.reserve(expCount);
263 for (i=0; expBegin && i<expCount; i++)
266 exponents.push_back(
WindowSlider(*expBegin++, InversionIsFast(), 0));
267 exponents[i].FindNextWindow();
268 buckets[i].resize(((
size_t) 1) << (exponents[i].windowSize-1),
Identity());
271 unsigned int expBitPosition = 0;
278 for (i=0; i<expCount; i++)
280 if (!exponents[i].finished && expBitPosition == exponents[i].windowBegin)
282 Element &bucket = buckets[i][exponents[i].expWindow/2];
283 if (exponents[i].negateNext)
284 Accumulate(bucket, Inverse(g));
286 Accumulate(bucket, g);
287 exponents[i].FindNextWindow();
289 notDone = notDone || !exponents[i].finished;
299 for (i=0; i<expCount; i++)
302 r = buckets[i][buckets[i].size()-1];
303 if (buckets[i].size() > 1)
305 for (
int j = (
int)buckets[i].size()-2; j >= 1; j--)
307 Accumulate(buckets[i][j], buckets[i][j+1]);
308 Accumulate(r, buckets[i][j]);
310 Accumulate(buckets[i][0], buckets[i][1]);
311 r = Add(Double(r), buckets[i][0]);
319 SimultaneousExponentiate(&result, base, &exponent, 1);
325 return MultiplicativeGroup().AbstractGroup<T>::CascadeScalarMultiply(x, e1, y, e2);
328template <
class Element,
class Iterator> Element GeneralCascadeExponentiation(
const AbstractRing<Element> &ring, Iterator begin, Iterator end)
336 MultiplicativeGroup().AbstractGroup<T>::SimultaneousMultiply(results, base, exponents, expCount);
Classes for performing mathematics over different fields.
virtual const Element & Gcd(const Element &a, const Element &b) const
Calculates the greatest common denominator in the ring.
virtual const Element & Mod(const Element &a, const Element &b) const =0
Performs a modular reduction in the ring.
virtual Element & Reduce(Element &a, const Element &b) const
Reduces an element in the congruence class.
virtual Element CascadeScalarMultiply(const Element &x, const Integer &e1, const Element &y, const Integer &e2) const
TODO.
virtual void SimultaneousMultiply(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const
Multiplies a base to multiple exponents in a group.
virtual const Element & Subtract(const Element &a, const Element &b) const
Subtracts elements in the group.
virtual Element & Accumulate(Element &a, const Element &b) const
TODO.
virtual Element ScalarMultiply(const Element &a, const Integer &e) const
Performs a scalar multiplication.
virtual Element Exponentiate(const Element &a, const Integer &e) const
Raises a base to an exponent in the group.
virtual const Element & Square(const Element &a) const
Square an element in the group.
virtual void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const
Exponentiates a base to multiple exponents in the Ring.
virtual const AbstractGroup< T > & MultiplicativeGroup() const
Retrieves the multiplicative group.
virtual const Element & Divide(const Element &a, const Element &b) const
Divides elements in the group.
virtual Element CascadeExponentiate(const Element &x, const Integer &e1, const Element &y, const Integer &e2) const
TODO.
Multiple precision integer with arithmetic operations.
static void Divide(Integer &r, Integer &q, const Integer &a, const Integer &d)
Extended Division.
bool GetBit(size_t i) const
Provides the i-th bit of the Integer.
unsigned int BitCount() const
Determines the number of bits required to represent the Integer.
bool NotNegative() const
Determines if the Integer is non-negative.
unsigned int WordCount() const
Determines the number of words required to represent the Integer.
static const Integer & One()
Integer representing 1.
Polynomial with Coefficients in GF(2)
const Element & MultiplicativeInverse(const Element &a) const
Calculate the multiplicative inverse of an element in the group.
word64 word
Full word used for multiprecision integer arithmetic.
const unsigned int WORD_BITS
Size of a platform word in bits.
unsigned int word32
32-bit unsigned datatype
Multiple precision integer with arithmetic operations.
const T & STDMAX(const T &a, const T &b)
Replacement function for std::max.
Crypto++ library namespace.
const char * Identity()
ConstByteArrayParameter.
Elliptical Curve Point over GF(2^n)
#define CRYPTOPP_ASSERT(exp)
Debugging and diagnostic assertion.