Class Gamma


  • public class Gamma
    extends java.lang.Object
    This is a utility class that provides computation methods related to the Gamma family of functions.
    Version:
    $Revision: 1042510 $ $Date: 2010-12-06 02:54:18 +0100 (lun. 06 déc. 2010) $
    • Method Summary

      All Methods Static Methods Concrete Methods 
      Modifier and Type Method Description
      static double digamma​(double x)
      Computes the digamma function of x.
      static double logGamma​(double x)
      Returns the natural logarithm of the gamma function Γ(x).
      static double regularizedGammaP​(double a, double x)
      Returns the regularized gamma function P(a, x).
      static double regularizedGammaP​(double a, double x, double epsilon, int maxIterations)
      Returns the regularized gamma function P(a, x).
      static double regularizedGammaQ​(double a, double x)
      Returns the regularized gamma function Q(a, x) = 1 - P(a, x).
      static double regularizedGammaQ​(double a, double x, double epsilon, int maxIterations)
      Returns the regularized gamma function Q(a, x) = 1 - P(a, x).
      static double trigamma​(double x)
      Computes the trigamma function of x.
      • Methods inherited from class java.lang.Object

        clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
    • Method Detail

      • regularizedGammaP

        public static double regularizedGammaP​(double a,
                                               double x)
                                        throws MathException
        Returns the regularized gamma function P(a, x).
        Parameters:
        a - the a parameter.
        x - the value.
        Returns:
        the regularized gamma function P(a, x)
        Throws:
        MathException - if the algorithm fails to converge.
      • regularizedGammaP

        public static double regularizedGammaP​(double a,
                                               double x,
                                               double epsilon,
                                               int maxIterations)
                                        throws MathException
        Returns the regularized gamma function P(a, x). The implementation of this method is based on:
        Parameters:
        a - the a parameter.
        x - the value.
        epsilon - When the absolute value of the nth item in the series is less than epsilon the approximation ceases to calculate further elements in the series.
        maxIterations - Maximum number of "iterations" to complete.
        Returns:
        the regularized gamma function P(a, x)
        Throws:
        MathException - if the algorithm fails to converge.
      • regularizedGammaQ

        public static double regularizedGammaQ​(double a,
                                               double x)
                                        throws MathException
        Returns the regularized gamma function Q(a, x) = 1 - P(a, x).
        Parameters:
        a - the a parameter.
        x - the value.
        Returns:
        the regularized gamma function Q(a, x)
        Throws:
        MathException - if the algorithm fails to converge.
      • regularizedGammaQ

        public static double regularizedGammaQ​(double a,
                                               double x,
                                               double epsilon,
                                               int maxIterations)
                                        throws MathException
        Returns the regularized gamma function Q(a, x) = 1 - P(a, x). The implementation of this method is based on:
        Parameters:
        a - the a parameter.
        x - the value.
        epsilon - When the absolute value of the nth item in the series is less than epsilon the approximation ceases to calculate further elements in the series.
        maxIterations - Maximum number of "iterations" to complete.
        Returns:
        the regularized gamma function P(a, x)
        Throws:
        MathException - if the algorithm fails to converge.
      • digamma

        public static double digamma​(double x)

        Computes the digamma function of x.

        This is an independently written implementation of the algorithm described in Jose Bernardo, Algorithm AS 103: Psi (Digamma) Function, Applied Statistics, 1976.

        Some of the constants have been changed to increase accuracy at the moderate expense of run-time. The result should be accurate to within 10^-8 absolute tolerance for x >= 10^-5 and within 10^-8 relative tolerance for x > 0.

        Performance for large negative values of x will be quite expensive (proportional to |x|). Accuracy for negative values of x should be about 10^-8 absolute for results less than 10^5 and 10^-8 relative for results larger than that.

        Parameters:
        x - the argument
        Returns:
        digamma(x) to within 10-8 relative or absolute error whichever is smaller
        Since:
        2.0
        See Also:
        Digamma at wikipedia , Bernardo's original article
      • trigamma

        public static double trigamma​(double x)

        Computes the trigamma function of x. This function is derived by taking the derivative of the implementation of digamma.

        Parameters:
        x - the argument
        Returns:
        trigamma(x) to within 10-8 relative or absolute error whichever is smaller
        Since:
        2.0
        See Also:
        Trigamma at wikipedia , digamma(double)