Class RandomDataImpl

  • All Implemented Interfaces:
    java.io.Serializable, RandomData

    public class RandomDataImpl
    extends java.lang.Object
    implements RandomData, java.io.Serializable
    Implements the RandomData interface using a RandomGenerator instance to generate non-secure data and a SecureRandom instance to provide data for the nextSecureXxx methods. If no RandomGenerator is provided in the constructor, the default is to use a generator based on Random. To plug in a different implementation, either implement RandomGenerator directly or extend AbstractRandomGenerator.

    Supports reseeding the underlying pseudo-random number generator (PRNG). The SecurityProvider and Algorithm used by the SecureRandom instance can also be reset.

    For details on the default PRNGs, see Random and SecureRandom.

    Usage Notes:

    • Instance variables are used to maintain RandomGenerator and SecureRandom instances used in data generation. Therefore, to generate a random sequence of values or strings, you should use just one RandomDataImpl instance repeatedly.
    • The "secure" methods are *much* slower. These should be used only when a cryptographically secure random sequence is required. A secure random sequence is a sequence of pseudo-random values which, in addition to being well-dispersed (so no subsequence of values is an any more likely than other subsequence of the the same length), also has the additional property that knowledge of values generated up to any point in the sequence does not make it any easier to predict subsequent values.
    • When a new RandomDataImpl is created, the underlying random number generators are not initialized. If you do not explicitly seed the default non-secure generator, it is seeded with the current time in milliseconds on first use. The same holds for the secure generator. If you provide a RandomGenerator to the constructor, however, this generator is not reseeded by the constructor nor is it reseeded on first use.
    • The reSeed and reSeedSecure methods delegate to the corresponding methods on the underlying RandomGenerator and SecureRandom instances. Therefore, reSeed(long) fully resets the initial state of the non-secure random number generator (so that reseeding with a specific value always results in the same subsequent random sequence); whereas reSeedSecure(long) does not reinitialize the secure random number generator (so secure sequences started with calls to reseedSecure(long) won't be identical).
    • This implementation is not synchronized.

    Version:
    $Revision: 1061496 $ $Date: 2011-01-20 21:32:16 +0100 (jeu. 20 janv. 2011) $
    See Also:
    Serialized Form
    • Method Summary

      All Methods Instance Methods Concrete Methods 
      Modifier and Type Method Description
      double nextBeta​(double alpha, double beta)
      Generates a random value from the Beta Distribution.
      int nextBinomial​(int numberOfTrials, double probabilityOfSuccess)
      Generates a random value from the Binomial Distribution.
      double nextCauchy​(double median, double scale)
      Generates a random value from the Cauchy Distribution.
      double nextChiSquare​(double df)
      Generates a random value from the ChiSquare Distribution.
      double nextExponential​(double mean)
      Returns a random value from an Exponential distribution with the given mean.
      double nextF​(double numeratorDf, double denominatorDf)
      Generates a random value from the F Distribution.
      double nextGamma​(double shape, double scale)
      Generates a random value from the Gamma Distribution.
      double nextGaussian​(double mu, double sigma)
      Generate a random value from a Normal (a.k.a.
      java.lang.String nextHexString​(int len)
      Generates a random string of hex characters of length len.
      int nextHypergeometric​(int populationSize, int numberOfSuccesses, int sampleSize)
      Generates a random value from the Hypergeometric Distribution.
      int nextInt​(int lower, int upper)
      Generate a random int value uniformly distributed between lower and upper, inclusive.
      double nextInversionDeviate​(ContinuousDistribution distribution)
      Generate a random deviate from the given distribution using the inversion method.
      int nextInversionDeviate​(IntegerDistribution distribution)
      Generate a random deviate from the given distribution using the inversion method.
      long nextLong​(long lower, long upper)
      Generate a random long value uniformly distributed between lower and upper, inclusive.
      int nextPascal​(int r, double p)
      Generates a random value from the Pascal Distribution.
      int[] nextPermutation​(int n, int k)
      Generates an integer array of length k whose entries are selected randomly, without repetition, from the integers 0 through n-1 (inclusive).
      long nextPoisson​(double mean)
      Generates a random value from the Poisson distribution with the given mean.
      java.lang.Object[] nextSample​(java.util.Collection<?> c, int k)
      Uses a 2-cycle permutation shuffle to generate a random permutation.
      java.lang.String nextSecureHexString​(int len)
      Generates a random string of hex characters from a secure random sequence.
      int nextSecureInt​(int lower, int upper)
      Generate a random int value uniformly distributed between lower and upper, inclusive.
      long nextSecureLong​(long lower, long upper)
      Generate a random long value uniformly distributed between lower and upper, inclusive.
      double nextT​(double df)
      Generates a random value from the T Distribution.
      double nextUniform​(double lower, double upper)
      Generates a uniformly distributed random value from the open interval (lower,upper) (i.e., endpoints excluded).
      double nextWeibull​(double shape, double scale)
      Generates a random value from the Weibull Distribution.
      int nextZipf​(int numberOfElements, double exponent)
      Generates a random value from the Zipf Distribution.
      void reSeed()
      Reseeds the random number generator with the current time in milliseconds.
      void reSeed​(long seed)
      Reseeds the random number generator with the supplied seed.
      void reSeedSecure()
      Reseeds the secure random number generator with the current time in milliseconds.
      void reSeedSecure​(long seed)
      Reseeds the secure random number generator with the supplied seed.
      void setSecureAlgorithm​(java.lang.String algorithm, java.lang.String provider)
      Sets the PRNG algorithm for the underlying SecureRandom instance using the Security Provider API.
      • Methods inherited from class java.lang.Object

        clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
    • Constructor Detail

      • RandomDataImpl

        public RandomDataImpl()
        Construct a RandomDataImpl.
      • RandomDataImpl

        public RandomDataImpl​(RandomGenerator rand)
        Construct a RandomDataImpl using the supplied RandomGenerator as the source of (non-secure) random data.
        Parameters:
        rand - the source of (non-secure) random data
        Since:
        1.1
    • Method Detail

      • nextHexString

        public java.lang.String nextHexString​(int len)
        Generates a random string of hex characters of length len.

        The generated string will be random, but not cryptographically secure. To generate cryptographically secure strings, use nextSecureHexString

        Preconditions:

        • len > 0 (otherwise an IllegalArgumentException is thrown.)

        Algorithm Description: hex strings are generated using a 2-step process.

        1. len/2+1 binary bytes are generated using the underlying Random
        2. Each binary byte is translated into 2 hex digits

        Specified by:
        nextHexString in interface RandomData
        Parameters:
        len - the desired string length.
        Returns:
        the random string.
        Throws:
        NotStrictlyPositiveException - if len <= 0.
      • nextInt

        public int nextInt​(int lower,
                           int upper)
        Generate a random int value uniformly distributed between lower and upper, inclusive.
        Specified by:
        nextInt in interface RandomData
        Parameters:
        lower - the lower bound.
        upper - the upper bound.
        Returns:
        the random integer.
        Throws:
        NumberIsTooLargeException - if lower >= upper.
      • nextLong

        public long nextLong​(long lower,
                             long upper)
        Generate a random long value uniformly distributed between lower and upper, inclusive.
        Specified by:
        nextLong in interface RandomData
        Parameters:
        lower - the lower bound.
        upper - the upper bound.
        Returns:
        the random integer.
        Throws:
        NumberIsTooLargeException - if lower >= upper.
      • nextSecureHexString

        public java.lang.String nextSecureHexString​(int len)
        Generates a random string of hex characters from a secure random sequence.

        If cryptographic security is not required, use nextHexString().

        Preconditions:

        • len > 0 (otherwise an IllegalArgumentException is thrown.)

        Algorithm Description: hex strings are generated in 40-byte segments using a 3-step process.

        1. 20 random bytes are generated using the underlying SecureRandom.
        2. SHA-1 hash is applied to yield a 20-byte binary digest.
        3. Each byte of the binary digest is converted to 2 hex digits.

        Specified by:
        nextSecureHexString in interface RandomData
        Parameters:
        len - the length of the generated string
        Returns:
        the random string
        Throws:
        NotStrictlyPositiveException - if len <= 0.
      • nextSecureInt

        public int nextSecureInt​(int lower,
                                 int upper)
        Generate a random int value uniformly distributed between lower and upper, inclusive. This algorithm uses a secure random number generator.
        Specified by:
        nextSecureInt in interface RandomData
        Parameters:
        lower - the lower bound.
        upper - the upper bound.
        Returns:
        the random integer.
        Throws:
        NumberIsTooLargeException - if lower >= upper.
      • nextSecureLong

        public long nextSecureLong​(long lower,
                                   long upper)
        Generate a random long value uniformly distributed between lower and upper, inclusive. This algorithm uses a secure random number generator.
        Specified by:
        nextSecureLong in interface RandomData
        Parameters:
        lower - the lower bound.
        upper - the upper bound.
        Returns:
        the random integer.
        Throws:
        NumberIsTooLargeException - if lower >= upper.
      • nextPoisson

        public long nextPoisson​(double mean)
        Generates a random value from the Poisson distribution with the given mean.

        Definition: Poisson Distribution

        Preconditions:

        • The specified mean must be positive (otherwise an IllegalArgumentException is thrown.)

        Algorithm Description:

        • For small means, uses simulation of a Poisson process using Uniform deviates, as described here. The Poisson process (and hence value returned) is bounded by 1000 * mean.
        • For large means, uses the rejection algorithm described in
          Devroye, Luc. (1981).The Computer Generation of Poisson Random Variables Computing vol. 26 pp. 197-207.

        Specified by:
        nextPoisson in interface RandomData
        Parameters:
        mean - mean of the Poisson distribution.
        Returns:
        the random Poisson value.
        Throws:
        NotStrictlyPositiveException - if mean <= 0.
      • nextGaussian

        public double nextGaussian​(double mu,
                                   double sigma)
        Generate a random value from a Normal (a.k.a. Gaussian) distribution with the given mean, mu and the given standard deviation, sigma.
        Specified by:
        nextGaussian in interface RandomData
        Parameters:
        mu - the mean of the distribution
        sigma - the standard deviation of the distribution
        Returns:
        the random Normal value
        Throws:
        NotStrictlyPositiveException - if sigma <= 0.
      • nextExponential

        public double nextExponential​(double mean)
        Returns a random value from an Exponential distribution with the given mean.

        Algorithm Description: Uses the Inversion Method to generate exponentially distributed random values from uniform deviates.

        Specified by:
        nextExponential in interface RandomData
        Parameters:
        mean - the mean of the distribution
        Returns:
        the random Exponential value
        Throws:
        NotStrictlyPositiveException - if mean <= 0.
      • nextUniform

        public double nextUniform​(double lower,
                                  double upper)
        Generates a uniformly distributed random value from the open interval (lower,upper) (i.e., endpoints excluded).

        Definition: Uniform Distribution lower and upper - lower are the location and scale parameters, respectively.

        Preconditions:

        • lower < upper (otherwise an IllegalArgumentException is thrown.)

        Algorithm Description: scales the output of Random.nextDouble(), but rejects 0 values (i.e., will generate another random double if Random.nextDouble() returns 0). This is necessary to provide a symmetric output interval (both endpoints excluded).

        Specified by:
        nextUniform in interface RandomData
        Parameters:
        lower - the lower bound.
        upper - the upper bound.
        Returns:
        a uniformly distributed random value from the interval (lower, upper)
        Throws:
        NumberIsTooLargeException - if lower >= upper.
      • nextBeta

        public double nextBeta​(double alpha,
                               double beta)
                        throws MathException
        Generates a random value from the Beta Distribution. This implementation uses inversion to generate random values.
        Parameters:
        alpha - first distribution shape parameter
        beta - second distribution shape parameter
        Returns:
        random value sampled from the beta(alpha, beta) distribution
        Throws:
        MathException - if an error occurs generating the random value
        Since:
        2.2
      • nextBinomial

        public int nextBinomial​(int numberOfTrials,
                                double probabilityOfSuccess)
                         throws MathException
        Generates a random value from the Binomial Distribution. This implementation uses inversion to generate random values.
        Parameters:
        numberOfTrials - number of trials of the Binomial distribution
        probabilityOfSuccess - probability of success of the Binomial distribution
        Returns:
        random value sampled from the Binomial(numberOfTrials, probabilityOfSuccess) distribution
        Throws:
        MathException - if an error occurs generating the random value
        Since:
        2.2
      • nextCauchy

        public double nextCauchy​(double median,
                                 double scale)
                          throws MathException
        Generates a random value from the Cauchy Distribution. This implementation uses inversion to generate random values.
        Parameters:
        median - the median of the Cauchy distribution
        scale - the scale parameter of the Cauchy distribution
        Returns:
        random value sampled from the Cauchy(median, scale) distribution
        Throws:
        MathException - if an error occurs generating the random value
        Since:
        2.2
      • nextChiSquare

        public double nextChiSquare​(double df)
                             throws MathException
        Generates a random value from the ChiSquare Distribution. This implementation uses inversion to generate random values.
        Parameters:
        df - the degrees of freedom of the ChiSquare distribution
        Returns:
        random value sampled from the ChiSquare(df) distribution
        Throws:
        MathException - if an error occurs generating the random value
        Since:
        2.2
      • nextF

        public double nextF​(double numeratorDf,
                            double denominatorDf)
                     throws MathException
        Generates a random value from the F Distribution. This implementation uses inversion to generate random values.
        Parameters:
        numeratorDf - the numerator degrees of freedom of the F distribution
        denominatorDf - the denominator degrees of freedom of the F distribution
        Returns:
        random value sampled from the F(numeratorDf, denominatorDf) distribution
        Throws:
        MathException - if an error occurs generating the random value
        Since:
        2.2
      • nextGamma

        public double nextGamma​(double shape,
                                double scale)
                         throws MathException
        Generates a random value from the Gamma Distribution. This implementation uses inversion to generate random values.
        Parameters:
        shape - the median of the Gamma distribution
        scale - the scale parameter of the Gamma distribution
        Returns:
        random value sampled from the Gamma(shape, scale) distribution
        Throws:
        MathException - if an error occurs generating the random value
        Since:
        2.2
      • nextHypergeometric

        public int nextHypergeometric​(int populationSize,
                                      int numberOfSuccesses,
                                      int sampleSize)
                               throws MathException
        Generates a random value from the Hypergeometric Distribution. This implementation uses inversion to generate random values.
        Parameters:
        populationSize - the population size of the Hypergeometric distribution
        numberOfSuccesses - number of successes in the population of the Hypergeometric distribution
        sampleSize - the sample size of the Hypergeometric distribution
        Returns:
        random value sampled from the Hypergeometric(numberOfSuccesses, sampleSize) distribution
        Throws:
        MathException - if an error occurs generating the random value
        Since:
        2.2
      • nextPascal

        public int nextPascal​(int r,
                              double p)
                       throws MathException
        Generates a random value from the Pascal Distribution. This implementation uses inversion to generate random values.
        Parameters:
        r - the number of successes of the Pascal distribution
        p - the probability of success of the Pascal distribution
        Returns:
        random value sampled from the Pascal(r, p) distribution
        Throws:
        MathException - if an error occurs generating the random value
        Since:
        2.2
      • nextT

        public double nextT​(double df)
                     throws MathException
        Generates a random value from the T Distribution. This implementation uses inversion to generate random values.
        Parameters:
        df - the degrees of freedom of the T distribution
        Returns:
        random value from the T(df) distribution
        Throws:
        MathException - if an error occurs generating the random value
        Since:
        2.2
      • nextWeibull

        public double nextWeibull​(double shape,
                                  double scale)
                           throws MathException
        Generates a random value from the Weibull Distribution. This implementation uses inversion to generate random values.
        Parameters:
        shape - the shape parameter of the Weibull distribution
        scale - the scale parameter of the Weibull distribution
        Returns:
        random value sampled from the Weibull(shape, size) distribution
        Throws:
        MathException - if an error occurs generating the random value
        Since:
        2.2
      • nextZipf

        public int nextZipf​(int numberOfElements,
                            double exponent)
                     throws MathException
        Generates a random value from the Zipf Distribution. This implementation uses inversion to generate random values.
        Parameters:
        numberOfElements - the number of elements of the ZipfDistribution
        exponent - the exponent of the ZipfDistribution
        Returns:
        random value sampled from the Zipf(numberOfElements, exponent) distribution
        Throws:
        MathException - if an error occurs generating the random value
        Since:
        2.2
      • reSeed

        public void reSeed​(long seed)
        Reseeds the random number generator with the supplied seed.

        Will create and initialize if null.

        Parameters:
        seed - the seed value to use
      • reSeedSecure

        public void reSeedSecure()
        Reseeds the secure random number generator with the current time in milliseconds.

        Will create and initialize if null.

      • reSeedSecure

        public void reSeedSecure​(long seed)
        Reseeds the secure random number generator with the supplied seed.

        Will create and initialize if null.

        Parameters:
        seed - the seed value to use
      • reSeed

        public void reSeed()
        Reseeds the random number generator with the current time in milliseconds.
      • setSecureAlgorithm

        public void setSecureAlgorithm​(java.lang.String algorithm,
                                       java.lang.String provider)
                                throws java.security.NoSuchAlgorithmException,
                                       java.security.NoSuchProviderException
        Sets the PRNG algorithm for the underlying SecureRandom instance using the Security Provider API. The Security Provider API is defined in Java Cryptography Architecture API Specification & Reference.

        USAGE NOTE: This method carries significant overhead and may take several seconds to execute.

        Parameters:
        algorithm - the name of the PRNG algorithm
        provider - the name of the provider
        Throws:
        java.security.NoSuchAlgorithmException - if the specified algorithm is not available
        java.security.NoSuchProviderException - if the specified provider is not installed
      • nextPermutation

        public int[] nextPermutation​(int n,
                                     int k)
        Generates an integer array of length k whose entries are selected randomly, without repetition, from the integers 0 through n-1 (inclusive).

        Generated arrays represent permutations of n taken k at a time.

        Preconditions:

        • k <= n
        • n > 0
        If the preconditions are not met, an IllegalArgumentException is thrown.

        Uses a 2-cycle permutation shuffle. The shuffling process is described here.

        Specified by:
        nextPermutation in interface RandomData
        Parameters:
        n - domain of the permutation (must be positive)
        k - size of the permutation (must satisfy 0 < k <= n).
        Returns:
        the random permutation as an int array
        Throws:
        NumberIsTooLargeException - if k > n.
        NotStrictlyPositiveException - if k <= 0.
      • nextSample

        public java.lang.Object[] nextSample​(java.util.Collection<?> c,
                                             int k)
        Uses a 2-cycle permutation shuffle to generate a random permutation. Algorithm Description: Uses a 2-cycle permutation shuffle to generate a random permutation of c.size() and then returns the elements whose indexes correspond to the elements of the generated permutation. This technique is described, and proven to generate random samples, here
        Specified by:
        nextSample in interface RandomData
        Parameters:
        c - Collection to sample from.
        k - sample size.
        Returns:
        the random sample.
        Throws:
        NumberIsTooLargeException - if k > c.size().
        NotStrictlyPositiveException - if k <= 0.
      • nextInversionDeviate

        public double nextInversionDeviate​(ContinuousDistribution distribution)
                                    throws MathException
        Generate a random deviate from the given distribution using the inversion method.
        Parameters:
        distribution - Continuous distribution to generate a random value from
        Returns:
        a random value sampled from the given distribution
        Throws:
        MathException - if an error occurs computing the inverse cumulative distribution function
        Since:
        2.2
      • nextInversionDeviate

        public int nextInversionDeviate​(IntegerDistribution distribution)
                                 throws MathException
        Generate a random deviate from the given distribution using the inversion method.
        Parameters:
        distribution - Integer distribution to generate a random value from
        Returns:
        a random value sampled from the given distribution
        Throws:
        MathException - if an error occurs computing the inverse cumulative distribution function
        Since:
        2.2