Package org.apache.commons.math.random
Interface EmpiricalDistribution
-
- All Known Implementing Classes:
EmpiricalDistributionImpl
public interface EmpiricalDistribution
Represents an empirical probability distribution -- a probability distribution derived from observed data without making any assumptions about the functional form of the population distribution that the data come from.Implementations of this interface maintain data structures, called distribution digests, that describe empirical distributions and support the following operations:
- loading the distribution from a file of observed data values
- dividing the input data into "bin ranges" and reporting bin frequency counts (data for histogram)
- reporting univariate statistics describing the full set of data values as well as the observations within each bin
- generating random values from the distribution
EmpiricalDistribution
implementations to build grouped frequency histograms representing the input data or to generate random values "like" those in the input file -- i.e., the values generated will follow the distribution of the values in the file.- Version:
- $Revision: 817128 $ $Date: 2009-09-21 03:30:53 +0200 (lun. 21 sept. 2009) $
-
-
Method Summary
All Methods Instance Methods Abstract Methods Modifier and Type Method Description int
getBinCount()
Returns the number of bins.java.util.List<SummaryStatistics>
getBinStats()
Returns a list ofSummaryStatistics
containing statistics describing the values in each of the bins.double
getNextValue()
Generates a random value from this distribution.StatisticalSummary
getSampleStats()
Returns aStatisticalSummary
describing this distribution.double[]
getUpperBounds()
Returns the array of upper bounds for the bins.boolean
isLoaded()
Property indicating whether or not the distribution has been loaded.void
load(double[] dataArray)
Computes the empirical distribution from the provided array of numbers.void
load(java.io.File file)
Computes the empirical distribution from the input file.void
load(java.net.URL url)
Computes the empirical distribution using data read from a URL.
-
-
-
Method Detail
-
load
void load(double[] dataArray)
Computes the empirical distribution from the provided array of numbers.- Parameters:
dataArray
- the data array
-
load
void load(java.io.File file) throws java.io.IOException
Computes the empirical distribution from the input file.- Parameters:
file
- the input file- Throws:
java.io.IOException
- if an IO error occurs
-
load
void load(java.net.URL url) throws java.io.IOException
Computes the empirical distribution using data read from a URL.- Parameters:
url
- url of the input file- Throws:
java.io.IOException
- if an IO error occurs
-
getNextValue
double getNextValue() throws java.lang.IllegalStateException
Generates a random value from this distribution. Preconditions:- the distribution must be loaded before invoking this method
- Returns:
- the random value.
- Throws:
java.lang.IllegalStateException
- if the distribution has not been loaded
-
getSampleStats
StatisticalSummary getSampleStats() throws java.lang.IllegalStateException
Returns aStatisticalSummary
describing this distribution. Preconditions:- the distribution must be loaded before invoking this method
- Returns:
- the sample statistics
- Throws:
java.lang.IllegalStateException
- if the distribution has not been loaded
-
isLoaded
boolean isLoaded()
Property indicating whether or not the distribution has been loaded.- Returns:
- true if the distribution has been loaded
-
getBinCount
int getBinCount()
Returns the number of bins.- Returns:
- the number of bins
-
getBinStats
java.util.List<SummaryStatistics> getBinStats()
Returns a list ofSummaryStatistics
containing statistics describing the values in each of the bins. The List is indexed on the bin number.- Returns:
- List of bin statistics
-
getUpperBounds
double[] getUpperBounds()
Returns the array of upper bounds for the bins. Bins are:
[min,upperBounds[0]],(upperBounds[0],upperBounds[1]],..., (upperBounds[binCount-2], upperBounds[binCount-1] = max].- Returns:
- array of bin upper bounds
-
-