Class ChiSquaredDistributionImpl
- java.lang.Object
-
- org.apache.commons.math.distribution.AbstractDistribution
-
- org.apache.commons.math.distribution.AbstractContinuousDistribution
-
- org.apache.commons.math.distribution.ChiSquaredDistributionImpl
-
- All Implemented Interfaces:
java.io.Serializable
,ChiSquaredDistribution
,ContinuousDistribution
,Distribution
,HasDensity<java.lang.Double>
public class ChiSquaredDistributionImpl extends AbstractContinuousDistribution implements ChiSquaredDistribution, java.io.Serializable
The default implementation ofChiSquaredDistribution
- Version:
- $Revision: 1054524 $ $Date: 2011-01-03 05:59:18 +0100 (lun. 03 janv. 2011) $
- See Also:
- Serialized Form
-
-
Field Summary
Fields Modifier and Type Field Description static double
DEFAULT_INVERSE_ABSOLUTE_ACCURACY
Default inverse cumulative probability accuracy-
Fields inherited from class org.apache.commons.math.distribution.AbstractContinuousDistribution
randomData
-
-
Constructor Summary
Constructors Constructor Description ChiSquaredDistributionImpl(double df)
Create a Chi-Squared distribution with the given degrees of freedom.ChiSquaredDistributionImpl(double df, double inverseCumAccuracy)
Create a Chi-Squared distribution with the given degrees of freedom and inverse cumulative probability accuracy.ChiSquaredDistributionImpl(double df, GammaDistribution g)
Deprecated.as of 2.1 (to avoid possibly inconsistent state, the "GammaDistribution" will be instantiated internally)
-
Method Summary
All Methods Instance Methods Concrete Methods Deprecated Methods Modifier and Type Method Description double
cumulativeProbability(double x)
For this distribution, X, this method returns P(X < x).double
density(double x)
Return the probability density for a particular point.double
density(java.lang.Double x)
Deprecated.double
getDegreesOfFreedom()
Access the degrees of freedom.protected double
getDomainLowerBound(double p)
Access the domain value lower bound, based onp
, used to bracket a CDF root.protected double
getDomainUpperBound(double p)
Access the domain value upper bound, based onp
, used to bracket a CDF root.protected double
getInitialDomain(double p)
Access the initial domain value, based onp
, used to bracket a CDF root.double
getNumericalMean()
Returns the mean of the distribution.double
getNumericalVariance()
Returns the variance of the distribution.protected double
getSolverAbsoluteAccuracy()
Return the absolute accuracy setting of the solver used to estimate inverse cumulative probabilities.double
getSupportLowerBound()
Returns the lower bound of the support for the distribution.double
getSupportUpperBound()
Returns the upper bound for the support for the distribution.double
inverseCumulativeProbability(double p)
For this distribution, X, this method returns the critical point x, such that P(X < x) =p
.void
setDegreesOfFreedom(double degreesOfFreedom)
Deprecated.as of 2.1 (class will become immutable in 3.0)void
setGamma(GammaDistribution g)
Deprecated.as of 2.1 (class will become immutable in 3.0)-
Methods inherited from class org.apache.commons.math.distribution.AbstractContinuousDistribution
reseedRandomGenerator, sample, sample
-
Methods inherited from class org.apache.commons.math.distribution.AbstractDistribution
cumulativeProbability
-
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Methods inherited from interface org.apache.commons.math.distribution.Distribution
cumulativeProbability
-
-
-
-
Field Detail
-
DEFAULT_INVERSE_ABSOLUTE_ACCURACY
public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY
Default inverse cumulative probability accuracy- Since:
- 2.1
- See Also:
- Constant Field Values
-
-
Constructor Detail
-
ChiSquaredDistributionImpl
public ChiSquaredDistributionImpl(double df)
Create a Chi-Squared distribution with the given degrees of freedom.- Parameters:
df
- degrees of freedom.
-
ChiSquaredDistributionImpl
@Deprecated public ChiSquaredDistributionImpl(double df, GammaDistribution g)
Deprecated.as of 2.1 (to avoid possibly inconsistent state, the "GammaDistribution" will be instantiated internally)Create a Chi-Squared distribution with the given degrees of freedom.- Parameters:
df
- degrees of freedom.g
- the underlying gamma distribution used to compute probabilities.- Since:
- 1.2
-
ChiSquaredDistributionImpl
public ChiSquaredDistributionImpl(double df, double inverseCumAccuracy)
Create a Chi-Squared distribution with the given degrees of freedom and inverse cumulative probability accuracy.- Parameters:
df
- degrees of freedom.inverseCumAccuracy
- the maximum absolute error in inverse cumulative probability estimates (defaults toDEFAULT_INVERSE_ABSOLUTE_ACCURACY
)- Since:
- 2.1
-
-
Method Detail
-
setDegreesOfFreedom
@Deprecated public void setDegreesOfFreedom(double degreesOfFreedom)
Deprecated.as of 2.1 (class will become immutable in 3.0)Modify the degrees of freedom.- Specified by:
setDegreesOfFreedom
in interfaceChiSquaredDistribution
- Parameters:
degreesOfFreedom
- the new degrees of freedom.
-
getDegreesOfFreedom
public double getDegreesOfFreedom()
Access the degrees of freedom.- Specified by:
getDegreesOfFreedom
in interfaceChiSquaredDistribution
- Returns:
- the degrees of freedom.
-
density
@Deprecated public double density(java.lang.Double x)
Deprecated.Return the probability density for a particular point.- Specified by:
density
in interfaceChiSquaredDistribution
- Specified by:
density
in interfaceHasDensity<java.lang.Double>
- Parameters:
x
- The point at which the density should be computed.- Returns:
- The pdf at point x.
-
density
public double density(double x)
Return the probability density for a particular point.- Overrides:
density
in classAbstractContinuousDistribution
- Parameters:
x
- The point at which the density should be computed.- Returns:
- The pdf at point x.
- Since:
- 2.1
-
cumulativeProbability
public double cumulativeProbability(double x) throws MathException
For this distribution, X, this method returns P(X < x).- Specified by:
cumulativeProbability
in interfaceDistribution
- Parameters:
x
- the value at which the CDF is evaluated.- Returns:
- CDF for this distribution.
- Throws:
MathException
- if the cumulative probability can not be computed due to convergence or other numerical errors.
-
inverseCumulativeProbability
public double inverseCumulativeProbability(double p) throws MathException
For this distribution, X, this method returns the critical point x, such that P(X < x) =p
.Returns 0 for p=0 and
Double.POSITIVE_INFINITY
for p=1.- Specified by:
inverseCumulativeProbability
in interfaceContinuousDistribution
- Overrides:
inverseCumulativeProbability
in classAbstractContinuousDistribution
- Parameters:
p
- the desired probability- Returns:
- x, such that P(X < x) =
p
- Throws:
MathException
- if the inverse cumulative probability can not be computed due to convergence or other numerical errors.java.lang.IllegalArgumentException
- ifp
is not a valid probability.
-
getDomainLowerBound
protected double getDomainLowerBound(double p)
Access the domain value lower bound, based onp
, used to bracket a CDF root. This method is used byinverseCumulativeProbability(double)
to find critical values.- Specified by:
getDomainLowerBound
in classAbstractContinuousDistribution
- Parameters:
p
- the desired probability for the critical value- Returns:
- domain value lower bound, i.e.
P(X < lower bound) <
p
-
getDomainUpperBound
protected double getDomainUpperBound(double p)
Access the domain value upper bound, based onp
, used to bracket a CDF root. This method is used byinverseCumulativeProbability(double)
to find critical values.- Specified by:
getDomainUpperBound
in classAbstractContinuousDistribution
- Parameters:
p
- the desired probability for the critical value- Returns:
- domain value upper bound, i.e.
P(X < upper bound) >
p
-
getInitialDomain
protected double getInitialDomain(double p)
Access the initial domain value, based onp
, used to bracket a CDF root. This method is used byinverseCumulativeProbability(double)
to find critical values.- Specified by:
getInitialDomain
in classAbstractContinuousDistribution
- Parameters:
p
- the desired probability for the critical value- Returns:
- initial domain value
-
setGamma
@Deprecated public void setGamma(GammaDistribution g)
Deprecated.as of 2.1 (class will become immutable in 3.0)Modify the underlying gamma distribution. The caller is responsible for insuring the gamma distribution has the proper parameter settings.- Parameters:
g
- the new distribution.- Since:
- 1.2 made public
-
getSolverAbsoluteAccuracy
protected double getSolverAbsoluteAccuracy()
Return the absolute accuracy setting of the solver used to estimate inverse cumulative probabilities.- Overrides:
getSolverAbsoluteAccuracy
in classAbstractContinuousDistribution
- Returns:
- the solver absolute accuracy
- Since:
- 2.1
-
getSupportLowerBound
public double getSupportLowerBound()
Returns the lower bound of the support for the distribution. The lower bound of the support is always 0 no matter the degrees of freedom.- Returns:
- lower bound of the support (always 0)
- Since:
- 2.2
-
getSupportUpperBound
public double getSupportUpperBound()
Returns the upper bound for the support for the distribution. The upper bound of the support is always positive infinity no matter the degrees of freedom.- Returns:
- upper bound of the support (always Double.POSITIVE_INFINITY)
- Since:
- 2.2
-
getNumericalMean
public double getNumericalMean()
Returns the mean of the distribution. Fork
degrees of freedom, the mean isk
- Returns:
- the mean
- Since:
- 2.2
-
getNumericalVariance
public double getNumericalVariance()
Returns the variance of the distribution. Fork
degrees of freedom, the variance is2 * k
- Returns:
- the variance
- Since:
- 2.2
-
-