Class PolynomialFunctionNewtonForm
- java.lang.Object
-
- org.apache.commons.math.analysis.polynomials.PolynomialFunctionNewtonForm
-
- All Implemented Interfaces:
UnivariateRealFunction
public class PolynomialFunctionNewtonForm extends java.lang.Object implements UnivariateRealFunction
Implements the representation of a real polynomial function in Newton Form. For reference, see Elementary Numerical Analysis, ISBN 0070124477, chapter 2.The formula of polynomial in Newton form is p(x) = a[0] + a[1](x-c[0]) + a[2](x-c[0])(x-c[1]) + ... + a[n](x-c[0])(x-c[1])...(x-c[n-1]) Note that the length of a[] is one more than the length of c[]
- Since:
- 1.2
- Version:
- $Revision: 1073498 $ $Date: 2011-02-22 21:57:26 +0100 (mar. 22 févr. 2011) $
-
-
Constructor Summary
Constructors Constructor Description PolynomialFunctionNewtonForm(double[] a, double[] c)
Construct a Newton polynomial with the given a[] and c[].
-
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description protected void
computeCoefficients()
Calculate the normal polynomial coefficients given the Newton form.int
degree()
Returns the degree of the polynomial.static double
evaluate(double[] a, double[] c, double z)
Evaluate the Newton polynomial using nested multiplication.double[]
getCenters()
Returns a copy of the centers array.double[]
getCoefficients()
Returns a copy of the coefficients array.double[]
getNewtonCoefficients()
Returns a copy of coefficients in Newton form formula.double
value(double z)
Calculate the function value at the given point.protected static void
verifyInputArray(double[] a, double[] c)
Verifies that the input arrays are valid.
-
-
-
Constructor Detail
-
PolynomialFunctionNewtonForm
public PolynomialFunctionNewtonForm(double[] a, double[] c) throws java.lang.IllegalArgumentException
Construct a Newton polynomial with the given a[] and c[]. The order of centers are important in that if c[] shuffle, then values of a[] would completely change, not just a permutation of old a[].The constructor makes copy of the input arrays and assigns them.
- Parameters:
a
- the coefficients in Newton form formulac
- the centers- Throws:
java.lang.IllegalArgumentException
- if input arrays are not valid
-
-
Method Detail
-
value
public double value(double z) throws FunctionEvaluationException
Calculate the function value at the given point.- Specified by:
value
in interfaceUnivariateRealFunction
- Parameters:
z
- the point at which the function value is to be computed- Returns:
- the function value
- Throws:
FunctionEvaluationException
- if a runtime error occurs- See Also:
UnivariateRealFunction.value(double)
-
degree
public int degree()
Returns the degree of the polynomial.- Returns:
- the degree of the polynomial
-
getNewtonCoefficients
public double[] getNewtonCoefficients()
Returns a copy of coefficients in Newton form formula.Changes made to the returned copy will not affect the polynomial.
- Returns:
- a fresh copy of coefficients in Newton form formula
-
getCenters
public double[] getCenters()
Returns a copy of the centers array.Changes made to the returned copy will not affect the polynomial.
- Returns:
- a fresh copy of the centers array
-
getCoefficients
public double[] getCoefficients()
Returns a copy of the coefficients array.Changes made to the returned copy will not affect the polynomial.
- Returns:
- a fresh copy of the coefficients array
-
evaluate
public static double evaluate(double[] a, double[] c, double z) throws FunctionEvaluationException, java.lang.IllegalArgumentException
Evaluate the Newton polynomial using nested multiplication. It is also called Horner's Rule and takes O(N) time.- Parameters:
a
- the coefficients in Newton form formulac
- the centersz
- the point at which the function value is to be computed- Returns:
- the function value
- Throws:
FunctionEvaluationException
- if a runtime error occursjava.lang.IllegalArgumentException
- if inputs are not valid
-
computeCoefficients
protected void computeCoefficients()
Calculate the normal polynomial coefficients given the Newton form. It also uses nested multiplication but takes O(N^2) time.
-
verifyInputArray
protected static void verifyInputArray(double[] a, double[] c) throws java.lang.IllegalArgumentException
Verifies that the input arrays are valid.The centers must be distinct for interpolation purposes, but not for general use. Thus it is not verified here.
- Parameters:
a
- the coefficients in Newton form formulac
- the centers- Throws:
java.lang.IllegalArgumentException
- if not valid- See Also:
DividedDifferenceInterpolator.computeDividedDifference(double[], double[])
-
-