Colt 1.2.0

cern.colt.matrix.linalg
Class Property

java.lang.Object
  extended bycern.colt.PersistentObject
      extended bycern.colt.matrix.linalg.Property
All Implemented Interfaces:
Cloneable, Serializable

public class Property
extends PersistentObject

Tests matrices for linear algebraic properties (equality, tridiagonality, symmetry, singularity, etc).

Except where explicitly indicated, all methods involving equality tests (==) allow for numerical instability, to a degree specified upon instance construction and returned by method tolerance(). The public static final variable DEFAULT represents a default Property object with a tolerance of 1.0E-9. The public static final variable ZERO represents a Property object with a tolerance of 0.0. The public static final variable TWELVE represents a Property object with a tolerance of 1.0E-12. As long as you are happy with these tolerances, there is no need to construct Property objects. Simply use idioms like Property.DEFAULT.equals(A,B), Property.ZERO.equals(A,B), Property.TWELVE.equals(A,B).

To work with a different tolerance (e.g. 1.0E-15 or 1.0E-5) use the constructor and/or method setTolerance(double). Note that the public static final Property objects are immutable: Is is not possible to alter their tolerance. Any attempt to do so will throw an Exception.

Note that this implementation is not synchronized.

Example: equals(DoubleMatrix2D A, DoubleMatrix2D B) is defined as follows

{ some other tests not related to tolerance go here }
double epsilon = tolerance();
for (int row=rows; --row >= 0;) {
   for (int column=columns; --column >= 0;) {
      //if (!(A.getQuick(row,column) == B.getQuick(row,column))) return false;
      if (Math.abs(A.getQuick(row,column) - B.getQuick(row,column)) > epsilon) return false;
   }
}
return true;
Here are some example properties
matrix 4 x 4 
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
4 x 4
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1
4 x 4
1 1 0 0
1 1 1 0
0 1 1 1
0 0 1 1
4 x 4
0 1 1 1
0 1 1 1
0 0 0 1
0 0 0 1
4 x 4
0 0 0 0
1 1 0 0
1 1 0 0
1 1 1 1
4 x 4
1 1 0 0
0 1 1 0
0 1 0 1
1 0 1 1
4 x 4
1 1 1 0
0 1 0 0
1 1 0 1
0 0 1 1
upperBandwidth
0
0
1
3 0
1
2
lowerBandwidth
0
0
1
0 3
3
2
semiBandwidth
1
1
2
4 4
4
3
description
zero
diagonal
tridiagonal
upper triangular lower triangular
unstructured
unstructured

Version:
1.1, 28/May/2000 (fixed strange bugs involving NaN, -inf, inf)
See Also:
Serialized Form

Field Summary
static Property DEFAULT
          The default Property object; currently has tolerance()==1.0E-9.
static Property TWELVE
          A Property object with tolerance()==1.0E-12.
static Property ZERO
          A Property object with tolerance()==0.0.
 
Fields inherited from class cern.colt.PersistentObject
serialVersionUID
 
Constructor Summary
Property(double newTolerance)
          Constructs an instance with a tolerance of Math.abs(newTolerance).
 
Method Summary
 void checkRectangular(DoubleMatrix2D A)
          Checks whether the given matrix A is rectangular.
 void checkSquare(DoubleMatrix2D A)
          Checks whether the given matrix A is square.
 double density(DoubleMatrix2D A)
          Returns the matrix's fraction of non-zero cells; A.cardinality() / A.size().
 boolean equals(DoubleMatrix1D A, double value)
          Returns whether all cells of the given matrix A are equal to the given value.
 boolean equals(DoubleMatrix1D A, DoubleMatrix1D B)
          Returns whether both given matrices A and B are equal.
 boolean equals(DoubleMatrix2D A, double value)
          Returns whether all cells of the given matrix A are equal to the given value.
 boolean equals(DoubleMatrix2D A, DoubleMatrix2D B)
          Returns whether both given matrices A and B are equal.
 boolean equals(DoubleMatrix3D A, double value)
          Returns whether all cells of the given matrix A are equal to the given value.
 boolean equals(DoubleMatrix3D A, DoubleMatrix3D B)
          Returns whether both given matrices A and B are equal.
 void generateNonSingular(DoubleMatrix2D A)
          Modifies the given matrix square matrix A such that it is diagonally dominant by row and column, hence non-singular, hence invertible.
 boolean isDiagonal(DoubleMatrix2D A)
          A matrix A is diagonal if A[i,j] == 0 whenever i != j.
 boolean isDiagonallyDominantByColumn(DoubleMatrix2D A)
          A matrix A is diagonally dominant by column if the absolute value of each diagonal element is larger than the sum of the absolute values of the off-diagonal elements in the corresponding column.
 boolean isDiagonallyDominantByRow(DoubleMatrix2D A)
          A matrix A is diagonally dominant by row if the absolute value of each diagonal element is larger than the sum of the absolute values of the off-diagonal elements in the corresponding row.
 boolean isIdentity(DoubleMatrix2D A)
          A matrix A is an identity matrix if A[i,i] == 1 and all other cells are zero.
 boolean isLowerBidiagonal(DoubleMatrix2D A)
          A matrix A is lower bidiagonal if A[i,j]==0 unless i==j || i==j+1.
 boolean isLowerTriangular(DoubleMatrix2D A)
          A matrix A is lower triangular if A[i,j]==0 whenever i < j.
 boolean isNonNegative(DoubleMatrix2D A)
          A matrix A is non-negative if A[i,j] >= 0 holds for all cells.
 boolean isOrthogonal(DoubleMatrix2D A)
          A square matrix A is orthogonal if A*transpose(A) = I.
 boolean isPositive(DoubleMatrix2D A)
          A matrix A is positive if A[i,j] > 0 holds for all cells.
 boolean isSingular(DoubleMatrix2D A)
          A matrix A is singular if it has no inverse, that is, iff det(A)==0.
 boolean isSkewSymmetric(DoubleMatrix2D A)
          A square matrix A is skew-symmetric if A = -transpose(A), that is A[i,j] == -A[j,i].
 boolean isSquare(DoubleMatrix2D A)
          A matrix A is square if it has the same number of rows and columns.
 boolean isStrictlyLowerTriangular(DoubleMatrix2D A)
          A matrix A is strictly lower triangular if A[i,j]==0 whenever i <= j.
 boolean isStrictlyTriangular(DoubleMatrix2D A)
          A matrix A is strictly triangular if it is triangular and its diagonal elements all equal 0.
 boolean isStrictlyUpperTriangular(DoubleMatrix2D A)
          A matrix A is strictly upper triangular if A[i,j]==0 whenever i >= j.
 boolean isSymmetric(DoubleMatrix2D A)
          A matrix A is symmetric if A = tranpose(A), that is A[i,j] == A[j,i].
 boolean isTriangular(DoubleMatrix2D A)
          A matrix A is triangular iff it is either upper or lower triangular.
 boolean isTridiagonal(DoubleMatrix2D A)
          A matrix A is tridiagonal if A[i,j]==0 whenever Math.abs(i-j) > 1.
 boolean isUnitTriangular(DoubleMatrix2D A)
          A matrix A is unit triangular if it is triangular and its diagonal elements all equal 1.
 boolean isUpperBidiagonal(DoubleMatrix2D A)
          A matrix A is upper bidiagonal if A[i,j]==0 unless i==j || i==j-1.
 boolean isUpperTriangular(DoubleMatrix2D A)
          A matrix A is upper triangular if A[i,j]==0 whenever i > j.
 boolean isZero(DoubleMatrix2D A)
          A matrix A is zero if all its cells are zero.
 int lowerBandwidth(DoubleMatrix2D A)
          The lower bandwidth of a square matrix A is the maximum i-j for which A[i,j] is nonzero and i > j.
 int semiBandwidth(DoubleMatrix2D A)
          Returns the semi-bandwidth of the given square matrix A.
 void setTolerance(double newTolerance)
          Sets the tolerance to Math.abs(newTolerance).
 double tolerance()
          Returns the current tolerance.
 String toString(DoubleMatrix2D A)
          Returns summary information about the given matrix A.
 int upperBandwidth(DoubleMatrix2D A)
          The upper bandwidth of a square matrix A is the maximum j-i for which A[i,j] is nonzero and j > i.
 
Methods inherited from class cern.colt.PersistentObject
clone
 
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 

Field Detail

DEFAULT

public static final Property DEFAULT
The default Property object; currently has tolerance()==1.0E-9.


ZERO

public static final Property ZERO
A Property object with tolerance()==0.0.


TWELVE

public static final Property TWELVE
A Property object with tolerance()==1.0E-12.

Constructor Detail

Property

public Property(double newTolerance)
Constructs an instance with a tolerance of Math.abs(newTolerance).

Method Detail

checkRectangular

public void checkRectangular(DoubleMatrix2D A)
Checks whether the given matrix A is rectangular.

Throws:
IllegalArgumentException - if A.rows() < A.columns().

checkSquare

public void checkSquare(DoubleMatrix2D A)
Checks whether the given matrix A is square.

Throws:
IllegalArgumentException - if A.rows() != A.columns().

density

public double density(DoubleMatrix2D A)
Returns the matrix's fraction of non-zero cells; A.cardinality() / A.size().


equals

public boolean equals(DoubleMatrix1D A,
                      double value)
Returns whether all cells of the given matrix A are equal to the given value. The result is true if and only if A != null and ! (Math.abs(value - A[i]) > tolerance()) holds for all coordinates.

Parameters:
A - the first matrix to compare.
value - the value to compare against.
Returns:
true if the matrix is equal to the value; false otherwise.

equals

public boolean equals(DoubleMatrix1D A,
                      DoubleMatrix1D B)
Returns whether both given matrices A and B are equal. The result is true if A==B. Otherwise, the result is true if and only if both arguments are != null, have the same size and ! (Math.abs(A[i] - B[i]) > tolerance()) holds for all indexes.

Parameters:
A - the first matrix to compare.
B - the second matrix to compare.
Returns:
true if both matrices are equal; false otherwise.

equals

public boolean equals(DoubleMatrix2D A,
                      double value)
Returns whether all cells of the given matrix A are equal to the given value. The result is true if and only if A != null and ! (Math.abs(value - A[row,col]) > tolerance()) holds for all coordinates.

Parameters:
A - the first matrix to compare.
value - the value to compare against.
Returns:
true if the matrix is equal to the value; false otherwise.

equals

public boolean equals(DoubleMatrix2D A,
                      DoubleMatrix2D B)
Returns whether both given matrices A and B are equal. The result is true if A==B. Otherwise, the result is true if and only if both arguments are != null, have the same number of columns and rows and ! (Math.abs(A[row,col] - B[row,col]) > tolerance()) holds for all coordinates.

Parameters:
A - the first matrix to compare.
B - the second matrix to compare.
Returns:
true if both matrices are equal; false otherwise.

equals

public boolean equals(DoubleMatrix3D A,
                      double value)
Returns whether all cells of the given matrix A are equal to the given value. The result is true if and only if A != null and ! (Math.abs(value - A[slice,row,col]) > tolerance()) holds for all coordinates.

Parameters:
A - the first matrix to compare.
value - the value to compare against.
Returns:
true if the matrix is equal to the value; false otherwise.

equals

public boolean equals(DoubleMatrix3D A,
                      DoubleMatrix3D B)
Returns whether both given matrices A and B are equal. The result is true if A==B. Otherwise, the result is true if and only if both arguments are != null, have the same number of columns, rows and slices, and ! (Math.abs(A[slice,row,col] - B[slice,row,col]) > tolerance()) holds for all coordinates.

Parameters:
A - the first matrix to compare.
B - the second matrix to compare.
Returns:
true if both matrices are equal; false otherwise.

generateNonSingular

public void generateNonSingular(DoubleMatrix2D A)
Modifies the given matrix square matrix A such that it is diagonally dominant by row and column, hence non-singular, hence invertible. For testing purposes only.

Parameters:
A - the square matrix to modify.
Throws:
IllegalArgumentException - if !isSquare(A).

isDiagonal

public boolean isDiagonal(DoubleMatrix2D A)
A matrix A is diagonal if A[i,j] == 0 whenever i != j. Matrix may but need not be square.


isDiagonallyDominantByColumn

public boolean isDiagonallyDominantByColumn(DoubleMatrix2D A)
A matrix A is diagonally dominant by column if the absolute value of each diagonal element is larger than the sum of the absolute values of the off-diagonal elements in the corresponding column. returns true if for all i: abs(A[i,i]) > Sum(abs(A[j,i])); j != i. Matrix may but need not be square.

Note: Ignores tolerance.


isDiagonallyDominantByRow

public boolean isDiagonallyDominantByRow(DoubleMatrix2D A)
A matrix A is diagonally dominant by row if the absolute value of each diagonal element is larger than the sum of the absolute values of the off-diagonal elements in the corresponding row. returns true if for all i: abs(A[i,i]) > Sum(abs(A[i,j])); j != i. Matrix may but need not be square.

Note: Ignores tolerance.


isIdentity

public boolean isIdentity(DoubleMatrix2D A)
A matrix A is an identity matrix if A[i,i] == 1 and all other cells are zero. Matrix may but need not be square.


isLowerBidiagonal

public boolean isLowerBidiagonal(DoubleMatrix2D A)
A matrix A is lower bidiagonal if A[i,j]==0 unless i==j || i==j+1. Matrix may but need not be square.


isLowerTriangular

public boolean isLowerTriangular(DoubleMatrix2D A)
A matrix A is lower triangular if A[i,j]==0 whenever i < j. Matrix may but need not be square.


isNonNegative

public boolean isNonNegative(DoubleMatrix2D A)
A matrix A is non-negative if A[i,j] >= 0 holds for all cells.

Note: Ignores tolerance.


isOrthogonal

public boolean isOrthogonal(DoubleMatrix2D A)
A square matrix A is orthogonal if A*transpose(A) = I.

Throws:
IllegalArgumentException - if !isSquare(A).

isPositive

public boolean isPositive(DoubleMatrix2D A)
A matrix A is positive if A[i,j] > 0 holds for all cells.

Note: Ignores tolerance.


isSingular

public boolean isSingular(DoubleMatrix2D A)
A matrix A is singular if it has no inverse, that is, iff det(A)==0.


isSkewSymmetric

public boolean isSkewSymmetric(DoubleMatrix2D A)
A square matrix A is skew-symmetric if A = -transpose(A), that is A[i,j] == -A[j,i].

Throws:
IllegalArgumentException - if !isSquare(A).

isSquare

public boolean isSquare(DoubleMatrix2D A)
A matrix A is square if it has the same number of rows and columns.


isStrictlyLowerTriangular

public boolean isStrictlyLowerTriangular(DoubleMatrix2D A)
A matrix A is strictly lower triangular if A[i,j]==0 whenever i <= j. Matrix may but need not be square.


isStrictlyTriangular

public boolean isStrictlyTriangular(DoubleMatrix2D A)
A matrix A is strictly triangular if it is triangular and its diagonal elements all equal 0. Matrix may but need not be square.


isStrictlyUpperTriangular

public boolean isStrictlyUpperTriangular(DoubleMatrix2D A)
A matrix A is strictly upper triangular if A[i,j]==0 whenever i >= j. Matrix may but need not be square.


isSymmetric

public boolean isSymmetric(DoubleMatrix2D A)
A matrix A is symmetric if A = tranpose(A), that is A[i,j] == A[j,i].

Throws:
IllegalArgumentException - if !isSquare(A).

isTriangular

public boolean isTriangular(DoubleMatrix2D A)
A matrix A is triangular iff it is either upper or lower triangular. Matrix may but need not be square.


isTridiagonal

public boolean isTridiagonal(DoubleMatrix2D A)
A matrix A is tridiagonal if A[i,j]==0 whenever Math.abs(i-j) > 1. Matrix may but need not be square.


isUnitTriangular

public boolean isUnitTriangular(DoubleMatrix2D A)
A matrix A is unit triangular if it is triangular and its diagonal elements all equal 1. Matrix may but need not be square.


isUpperBidiagonal

public boolean isUpperBidiagonal(DoubleMatrix2D A)
A matrix A is upper bidiagonal if A[i,j]==0 unless i==j || i==j-1. Matrix may but need not be square.


isUpperTriangular

public boolean isUpperTriangular(DoubleMatrix2D A)
A matrix A is upper triangular if A[i,j]==0 whenever i > j. Matrix may but need not be square.


isZero

public boolean isZero(DoubleMatrix2D A)
A matrix A is zero if all its cells are zero.


lowerBandwidth

public int lowerBandwidth(DoubleMatrix2D A)
The lower bandwidth of a square matrix A is the maximum i-j for which A[i,j] is nonzero and i > j. A banded matrix has a "band" about the diagonal. Diagonal, tridiagonal and triangular matrices are special cases.

Parameters:
A - the square matrix to analyze.
Returns:
the lower bandwith.
Throws:
IllegalArgumentException - if !isSquare(A).
See Also:
semiBandwidth(DoubleMatrix2D), upperBandwidth(DoubleMatrix2D)

semiBandwidth

public int semiBandwidth(DoubleMatrix2D A)
Returns the semi-bandwidth of the given square matrix A. A banded matrix has a "band" about the diagonal. It is a matrix with all cells equal to zero, with the possible exception of the cells along the diagonal line, the k diagonal lines above the diagonal, and the k diagonal lines below the diagonal. The semi-bandwith l is the number k+1. The bandwidth p is the number 2*k + 1. For example, a tridiagonal matrix corresponds to k=1, l=2, p=3, a diagonal or zero matrix corresponds to k=0, l=1, p=1,

The upper bandwidth is the maximum j-i for which A[i,j] is nonzero and j > i. The lower bandwidth is the maximum i-j for which A[i,j] is nonzero and i > j. Diagonal, tridiagonal and triangular matrices are special cases.

Examples:

matrix 4 x 4 
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
4 x 4
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1
4 x 4
1 1 0 0
1 1 1 0
0 1 1 1
0 0 1 1
4 x 4
0 1 1 1
0 1 1 1
0 0 0 1
0 0 0 1
4 x 4
0 0 0 0
1 1 0 0
1 1 0 0
1 1 1 1
4 x 4
1 1 0 0
0 1 1 0
0 1 0 1
1 0 1 1
4 x 4
1 1 1 0
0 1 0 0
1 1 0 1
0 0 1 1
upperBandwidth
0
0
1
3 0
1
2
lowerBandwidth
0
0
1
0 3
3
2
semiBandwidth
1
1
2
4 4
4
3
description
zero
diagonal
tridiagonal
upper triangular lower triangular
unstructured
unstructured

Parameters:
A - the square matrix to analyze.
Returns:
the semi-bandwith l.
Throws:
IllegalArgumentException - if !isSquare(A).
See Also:
lowerBandwidth(DoubleMatrix2D), upperBandwidth(DoubleMatrix2D)

setTolerance

public void setTolerance(double newTolerance)
Sets the tolerance to Math.abs(newTolerance).

Throws:
UnsupportedOperationException - if this==DEFAULT || this==ZERO || this==TWELVE.

tolerance

public double tolerance()
Returns the current tolerance.


toString

public String toString(DoubleMatrix2D A)
Returns summary information about the given matrix A. That is a String with (propertyName, propertyValue) pairs. Useful for debugging or to quickly get the rough picture of a matrix. For example,
density                      : 0.9
isDiagonal                   : false
isDiagonallyDominantByRow    : false
isDiagonallyDominantByColumn : false
isIdentity                   : false
isLowerBidiagonal            : false
isLowerTriangular            : false
isNonNegative                : true
isOrthogonal                 : Illegal operation or error: Matrix must be square.
isPositive                   : true
isSingular                   : Illegal operation or error: Matrix must be square.
isSkewSymmetric              : Illegal operation or error: Matrix must be square.
isSquare                     : false
isStrictlyLowerTriangular    : false
isStrictlyTriangular         : false
isStrictlyUpperTriangular    : false
isSymmetric                  : Illegal operation or error: Matrix must be square.
isTriangular                 : false
isTridiagonal                : false
isUnitTriangular             : false
isUpperBidiagonal            : false
isUpperTriangular            : false
isZero                       : false
lowerBandwidth               : Illegal operation or error: Matrix must be square.
semiBandwidth                : Illegal operation or error: Matrix must be square.
upperBandwidth               : Illegal operation or error: Matrix must be square.


upperBandwidth

public int upperBandwidth(DoubleMatrix2D A)
The upper bandwidth of a square matrix A is the maximum j-i for which A[i,j] is nonzero and j > i. A banded matrix has a "band" about the diagonal. Diagonal, tridiagonal and triangular matrices are special cases.

Parameters:
A - the square matrix to analyze.
Returns:
the upper bandwith.
Throws:
IllegalArgumentException - if !isSquare(A).
See Also:
semiBandwidth(DoubleMatrix2D), lowerBandwidth(DoubleMatrix2D)

Colt 1.2.0

Jump to the Colt Homepage