.. CheMPS2: a spin-adapted implementation of DMRG for ab initio quantum chemistry Copyright (C) 2013-2018 Sebastian Wouters This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. .. index:: DMRG-SCF .. index:: DIIS .. index:: Newton-Raphson .. index:: augmented Hessian DMRG-SCF ======== In methods which use a FCI solver, this solver can be replaced by DMRG. DMRG allows for an efficient extraction of the 2-RDM. The 2-RDM of the active space is required in the complete active space self-consistent field (CASSCF) method to compute the gradient and the Hessian with respect to orbital rotations [DMRGSCF1]_. It is therefore natural to introduce a CASSCF variant with DMRG as active space solver, called DMRG-SCF [DMRGSCF2]_ [DMRGSCF3]_ [DMRGSCF4]_, which allows to treat static correlation in large active spaces. In CheMPS2, the augmented Hessian Newton-Raphson DMRG-SCF method is implemented, with exact Hessian [DMRGSCF5]_ [DMRGSCF6]_. Augmented Hessian Newton-Raphson -------------------------------- The basic idea is to express the energy with the unitary group generators up to second order: .. math:: \hat{E}_{pq} & = & \sum\limits_{\sigma} \hat{a}^{\dagger}_{p \sigma} \hat{a}_{q \sigma} \\ \left[ \hat{E}_{pq} , \hat{E}_{rs} \right] & = & \delta_{qr} \hat{E}_{ps} - \delta_{ps} \hat{E}_{rq} \\ \hat{E}^{-}_{pq} & = & \hat{E}_{pq} - \hat{E}_{qp} \\ \hat{T}(\vec{x}) & = & \sum\limits_{p`_ .. [DMRGSCF2] D. Ghosh, J. Hachmann, T. Yanai and G.K.-L. Chan, *Journal of Chemical Physics* **128**, 144117 (2008), doi: `10.1063/1.2883976 `_ .. [DMRGSCF3] D. Zgid and M. Nooijen, *Journal of Chemical Physics* **128**, 144116 (2008), doi: `10.1063/1.2883981 `_ .. [DMRGSCF4] T. Yanai, Y. Kurashige, D. Ghosh and G.K.-L. Chan, *International Journal of Quantum Chemistry* **109**, 2178-2190 (2009), doi: `10.1002/qua.22099 `_ .. [DMRGSCF5] S. Wouters, W. Poelmans, P.W. Ayers and D. Van Neck, *Computer Physics Communications* **185**, 1501-1514 (2014), doi: `10.1016/j.cpc.2014.01.019 `_ .. [DMRGSCF6] S. Wouters, T. Bogaerts, P. Van Der Voort, V. Van Speybroeck and D. Van Neck, *Journal of Chemical Physics* **140**, 241103 (2014), doi: `10.1063/1.4885815 `_ .. [DMRGSCF7] A. Banerjee, N. Adams, J. Simons and R. Shepard, *Journal of Physical Chemistry* **89**, 52-57 (1985), doi: `10.1021/j100247a015 `_ .. [DMRGSCF8] P. Pulay, *Chemical Physics Letters* **73**, 393-398 (1980), doi: `10.1016/0009-2614(80)80396-4 `_ .. [DMRGSCF9] C.D. Sherrill, Programming DIIS, http://vergil.chemistry.gatech.edu/notes/diis/node3.html (2000).