Bullet Collision Detection & Physics Library
Macros
gim_linear_math.h File Reference
#include "gim_math.h"
#include "gim_geom_types.h"
Include dependency graph for gim_linear_math.h:
This graph shows which files directly or indirectly include this file:

Go to the source code of this file.

Macros

#define VEC_ZERO_2(a)
 Zero out a 2D vector. More...
 
#define VEC_ZERO(a)
 Zero out a 3D vector. More...
 
#define VEC_ZERO_4(a)
 Zero out a 4D vector. More...
 
#define VEC_COPY_2(b, a)
 Vector copy. More...
 
#define VEC_COPY(b, a)
 Copy 3D vector. More...
 
#define VEC_COPY_4(b, a)
 Copy 4D vector. More...
 
#define VEC_SWAP(b, a)
 VECTOR SWAP. More...
 
#define VEC_DIFF_2(v21, v2, v1)
 Vector difference. More...
 
#define VEC_DIFF(v21, v2, v1)
 Vector difference. More...
 
#define VEC_DIFF_4(v21, v2, v1)
 Vector difference. More...
 
#define VEC_SUM_2(v21, v2, v1)
 Vector sum. More...
 
#define VEC_SUM(v21, v2, v1)
 Vector sum. More...
 
#define VEC_SUM_4(v21, v2, v1)
 Vector sum. More...
 
#define VEC_SCALE_2(c, a, b)
 scalar times vector More...
 
#define VEC_SCALE(c, a, b)
 scalar times vector More...
 
#define VEC_SCALE_4(c, a, b)
 scalar times vector More...
 
#define VEC_ACCUM_2(c, a, b)
 accumulate scaled vector More...
 
#define VEC_ACCUM(c, a, b)
 accumulate scaled vector More...
 
#define VEC_ACCUM_4(c, a, b)
 accumulate scaled vector More...
 
#define VEC_DOT_2(a, b)   ((a)[0] * (b)[0] + (a)[1] * (b)[1])
 Vector dot product. More...
 
#define VEC_DOT(a, b)   ((a)[0] * (b)[0] + (a)[1] * (b)[1] + (a)[2] * (b)[2])
 Vector dot product. More...
 
#define VEC_DOT_4(a, b)   ((a)[0] * (b)[0] + (a)[1] * (b)[1] + (a)[2] * (b)[2] + (a)[3] * (b)[3])
 Vector dot product. More...
 
#define VEC_IMPACT_SQ(bsq, direction, position)
 vector impact parameter (squared) More...
 
#define VEC_IMPACT(bsq, direction, position)
 vector impact parameter More...
 
#define VEC_LENGTH_2(a, l)
 Vector length. More...
 
#define VEC_LENGTH(a, l)
 Vector length. More...
 
#define VEC_LENGTH_4(a, l)
 Vector length. More...
 
#define VEC_INV_LENGTH_2(a, l)
 Vector inv length. More...
 
#define VEC_INV_LENGTH(a, l)
 Vector inv length. More...
 
#define VEC_INV_LENGTH_4(a, l)
 Vector inv length. More...
 
#define VEC_DISTANCE(_len, _va, _vb)
 distance between two points More...
 
#define VEC_CONJUGATE_LENGTH(a, l)
 Vector length. More...
 
#define VEC_NORMALIZE(a)
 Vector length. More...
 
#define VEC_RENORMALIZE(a, newlen)
 Set Vector size. More...
 
#define VEC_CROSS(c, a, b)
 Vector cross. More...
 
#define VEC_PERPENDICULAR(vp, v, n)
 
#define VEC_PARALLEL(vp, v, n)
 
#define VEC_PROJECT(vp, v, n)
 
#define VEC_UNPROJECT(vp, v, n)
 
#define VEC_REFLECT(vr, v, n)
 
#define VEC_BLEND_AB(vr, sa, a, sb, b)
 
#define VEC_BLEND(vr, a, b, s)   VEC_BLEND_AB(vr, (1 - s), a, s, b)
 
#define VEC_SET3(a, b, op, c)
 
#define VEC_MAYOR_COORD(vec, maxc)
 Finds the bigger cartesian coordinate from a vector. More...
 
#define VEC_MINOR_AXES(vec, i0, i1)
 Finds the 2 smallest cartesian coordinates from a vector. More...
 
#define VEC_EQUAL(v1, v2)   (v1[0] == v2[0] && v1[1] == v2[1] && v1[2] == v2[2])
 
#define VEC_NEAR_EQUAL(v1, v2)   (GIM_NEAR_EQUAL(v1[0], v2[0]) && GIM_NEAR_EQUAL(v1[1], v2[1]) && GIM_NEAR_EQUAL(v1[2], v2[2]))
 
#define X_AXIS_CROSS_VEC(dst, src)
 Vector cross. More...
 
#define Y_AXIS_CROSS_VEC(dst, src)
 
#define Z_AXIS_CROSS_VEC(dst, src)
 
#define IDENTIFY_MATRIX_3X3(m)
 initialize matrix More...
 
#define IDENTIFY_MATRIX_4X4(m)
 
#define ZERO_MATRIX_4X4(m)
 
#define ROTX_CS(m, cosine, sine)
 
#define ROTY_CS(m, cosine, sine)
 
#define ROTZ_CS(m, cosine, sine)
 
#define COPY_MATRIX_2X2(b, a)
 
#define COPY_MATRIX_2X3(b, a)
 
#define COPY_MATRIX_3X3(b, a)
 
#define COPY_MATRIX_4X4(b, a)
 
#define TRANSPOSE_MATRIX_2X2(b, a)
 
#define TRANSPOSE_MATRIX_3X3(b, a)
 
#define TRANSPOSE_MATRIX_4X4(b, a)
 
#define SCALE_MATRIX_2X2(b, s, a)
 
#define SCALE_MATRIX_3X3(b, s, a)
 
#define SCALE_MATRIX_4X4(b, s, a)
 
#define SCALE_VEC_MATRIX_2X2(b, svec, a)
 
#define SCALE_VEC_MATRIX_3X3(b, svec, a)
 
#define SCALE_VEC_MATRIX_4X4(b, svec, a)
 
#define ACCUM_SCALE_MATRIX_2X2(b, s, a)
 
#define ACCUM_SCALE_MATRIX_3X3(b, s, a)
 
#define ACCUM_SCALE_MATRIX_4X4(b, s, a)
 
#define MATRIX_PRODUCT_2X2(c, a, b)
 
#define MATRIX_PRODUCT_3X3(c, a, b)
 
#define MATRIX_PRODUCT_4X4(c, a, b)
 
#define MAT_DOT_VEC_2X2(p, m, v)
 
#define MAT_DOT_VEC_3X3(p, m, v)
 
#define MAT_DOT_VEC_4X4(p, m, v)
 
#define MAT_DOT_VEC_3X4(p, m, v)
 
#define VEC_DOT_MAT_3X3(p, v, m)
 
#define MAT_DOT_VEC_2X3(p, m, v)
 The matrix is assumed to be an affine matrix, with last two entries representing a translation. More...
 
#define MAT_TRANSFORM_PLANE_4X4(pout, m, plane)
 Transform a plane. More...
 
#define INV_TRANSP_MAT_DOT_VEC_2X2(p, m, v)
 inverse transpose of matrix times vector More...
 
#define NORM_XFORM_2X2(p, m, v)
 transform normal vector by inverse transpose of matrix and then renormalize the vector More...
 
#define OUTER_PRODUCT_2X2(m, v, t)
 outer product of vector times vector transpose More...
 
#define OUTER_PRODUCT_3X3(m, v, t)
 outer product of vector times vector transpose More...
 
#define OUTER_PRODUCT_4X4(m, v, t)
 outer product of vector times vector transpose More...
 
#define ACCUM_OUTER_PRODUCT_2X2(m, v, t)
 outer product of vector times vector transpose More...
 
#define ACCUM_OUTER_PRODUCT_3X3(m, v, t)
 outer product of vector times vector transpose More...
 
#define ACCUM_OUTER_PRODUCT_4X4(m, v, t)
 outer product of vector times vector transpose More...
 
#define DETERMINANT_2X2(d, m)
 determinant of matrix More...
 
#define DETERMINANT_3X3(d, m)
 determinant of matrix More...
 
#define COFACTOR_4X4_IJ(fac, m, i, j)
 i,j,th cofactor of a 4x4 matrix More...
 
#define DETERMINANT_4X4(d, m)
 determinant of matrix More...
 
#define COFACTOR_2X2(a, m)
 cofactor of matrix More...
 
#define COFACTOR_3X3(a, m)
 cofactor of matrix More...
 
#define COFACTOR_4X4(a, m)
 cofactor of matrix More...
 
#define ADJOINT_2X2(a, m)
 adjoint of matrix More...
 
#define ADJOINT_3X3(a, m)
 adjoint of matrix More...
 
#define ADJOINT_4X4(a, m)
 adjoint of matrix More...
 
#define SCALE_ADJOINT_2X2(a, s, m)
 compute adjoint of matrix and scale More...
 
#define SCALE_ADJOINT_3X3(a, s, m)
 compute adjoint of matrix and scale More...
 
#define SCALE_ADJOINT_4X4(a, s, m)
 compute adjoint of matrix and scale More...
 
#define INVERT_2X2(b, det, a)
 inverse of matrix More...
 
#define INVERT_3X3(b, det, a)
 inverse of matrix More...
 
#define INVERT_4X4(b, det, a)
 inverse of matrix More...
 
#define MAT_GET_ROW(mat, vec3, rowindex)
 Get the triple(3) row of a transform matrix. More...
 
#define MAT_GET_ROW2(mat, vec2, rowindex)
 Get the tuple(2) row of a transform matrix. More...
 
#define MAT_GET_ROW4(mat, vec4, rowindex)
 Get the quad (4) row of a transform matrix. More...
 
#define MAT_GET_COL(mat, vec3, colindex)
 Get the triple(3) col of a transform matrix. More...
 
#define MAT_GET_COL2(mat, vec2, colindex)
 Get the tuple(2) col of a transform matrix. More...
 
#define MAT_GET_COL4(mat, vec4, colindex)
 Get the quad (4) col of a transform matrix. More...
 
#define MAT_GET_X(mat, vec3)
 Get the triple(3) col of a transform matrix. More...
 
#define MAT_GET_Y(mat, vec3)
 Get the triple(3) col of a transform matrix. More...
 
#define MAT_GET_Z(mat, vec3)
 Get the triple(3) col of a transform matrix. More...
 
#define MAT_SET_X(mat, vec3)
 Get the triple(3) col of a transform matrix. More...
 
#define MAT_SET_Y(mat, vec3)
 Get the triple(3) col of a transform matrix. More...
 
#define MAT_SET_Z(mat, vec3)
 Get the triple(3) col of a transform matrix. More...
 
#define MAT_GET_TRANSLATION(mat, vec3)
 Get the triple(3) col of a transform matrix. More...
 
#define MAT_SET_TRANSLATION(mat, vec3)
 Set the triple(3) col of a transform matrix. More...
 
#define MAT_DOT_ROW(mat, vec3, rowindex)   (vec3[0] * mat[rowindex][0] + vec3[1] * mat[rowindex][1] + vec3[2] * mat[rowindex][2])
 Returns the dot product between a vec3f and the row of a matrix. More...
 
#define MAT_DOT_ROW2(mat, vec2, rowindex)   (vec2[0] * mat[rowindex][0] + vec2[1] * mat[rowindex][1])
 Returns the dot product between a vec2f and the row of a matrix. More...
 
#define MAT_DOT_ROW4(mat, vec4, rowindex)   (vec4[0] * mat[rowindex][0] + vec4[1] * mat[rowindex][1] + vec4[2] * mat[rowindex][2] + vec4[3] * mat[rowindex][3])
 Returns the dot product between a vec4f and the row of a matrix. More...
 
#define MAT_DOT_COL(mat, vec3, colindex)   (vec3[0] * mat[0][colindex] + vec3[1] * mat[1][colindex] + vec3[2] * mat[2][colindex])
 Returns the dot product between a vec3f and the col of a matrix. More...
 
#define MAT_DOT_COL2(mat, vec2, colindex)   (vec2[0] * mat[0][colindex] + vec2[1] * mat[1][colindex])
 Returns the dot product between a vec2f and the col of a matrix. More...
 
#define MAT_DOT_COL4(mat, vec4, colindex)   (vec4[0] * mat[0][colindex] + vec4[1] * mat[1][colindex] + vec4[2] * mat[2][colindex] + vec4[3] * mat[3][colindex])
 Returns the dot product between a vec4f and the col of a matrix. More...
 
#define INV_MAT_DOT_VEC_3X3(p, m, v)
 

Detailed Description

Author
Francisco Leon Najera Type Independant Vector and matrix operations.

Definition in file gim_linear_math.h.

Macro Definition Documentation

◆ ACCUM_OUTER_PRODUCT_2X2

#define ACCUM_OUTER_PRODUCT_2X2 (   m,
  v,
 
)
Value:
{ \
m[0][0] += v[0] * t[0]; \
m[0][1] += v[0] * t[1]; \
\
m[1][0] += v[1] * t[0]; \
m[1][1] += v[1] * t[1]; \
}

outer product of vector times vector transpose

The outer product of vector v and vector transpose t yeilds dyadic matrix m.

Definition at line 1053 of file gim_linear_math.h.

◆ ACCUM_OUTER_PRODUCT_3X3

#define ACCUM_OUTER_PRODUCT_3X3 (   m,
  v,
 
)
Value:
{ \
m[0][0] += v[0] * t[0]; \
m[0][1] += v[0] * t[1]; \
m[0][2] += v[0] * t[2]; \
\
m[1][0] += v[1] * t[0]; \
m[1][1] += v[1] * t[1]; \
m[1][2] += v[1] * t[2]; \
\
m[2][0] += v[2] * t[0]; \
m[2][1] += v[2] * t[1]; \
m[2][2] += v[2] * t[2]; \
}

outer product of vector times vector transpose

The outer product of vector v and vector transpose t yeilds dyadic matrix m.

Definition at line 1067 of file gim_linear_math.h.

◆ ACCUM_OUTER_PRODUCT_4X4

#define ACCUM_OUTER_PRODUCT_4X4 (   m,
  v,
 
)
Value:
{ \
m[0][0] += v[0] * t[0]; \
m[0][1] += v[0] * t[1]; \
m[0][2] += v[0] * t[2]; \
m[0][3] += v[0] * t[3]; \
\
m[1][0] += v[1] * t[0]; \
m[1][1] += v[1] * t[1]; \
m[1][2] += v[1] * t[2]; \
m[1][3] += v[1] * t[3]; \
\
m[2][0] += v[2] * t[0]; \
m[2][1] += v[2] * t[1]; \
m[2][2] += v[2] * t[2]; \
m[2][3] += v[2] * t[3]; \
\
m[3][0] += v[3] * t[0]; \
m[3][1] += v[3] * t[1]; \
m[3][2] += v[3] * t[2]; \
m[3][3] += v[3] * t[3]; \
}

outer product of vector times vector transpose

The outer product of vector v and vector transpose t yeilds dyadic matrix m.

Definition at line 1087 of file gim_linear_math.h.

◆ ACCUM_SCALE_MATRIX_2X2

#define ACCUM_SCALE_MATRIX_2X2 (   b,
  s,
 
)
Value:
{ \
b[0][0] += (s)*a[0][0]; \
b[0][1] += (s)*a[0][1]; \
\
b[1][0] += (s)*a[1][0]; \
b[1][1] += (s)*a[1][1]; \
}

multiply matrix by scalar

Definition at line 765 of file gim_linear_math.h.

◆ ACCUM_SCALE_MATRIX_3X3

#define ACCUM_SCALE_MATRIX_3X3 (   b,
  s,
 
)
Value:
{ \
b[0][0] += (s)*a[0][0]; \
b[0][1] += (s)*a[0][1]; \
b[0][2] += (s)*a[0][2]; \
\
b[1][0] += (s)*a[1][0]; \
b[1][1] += (s)*a[1][1]; \
b[1][2] += (s)*a[1][2]; \
\
b[2][0] += (s)*a[2][0]; \
b[2][1] += (s)*a[2][1]; \
b[2][2] += (s)*a[2][2]; \
}

multiply matrix by scalar

Definition at line 775 of file gim_linear_math.h.

◆ ACCUM_SCALE_MATRIX_4X4

#define ACCUM_SCALE_MATRIX_4X4 (   b,
  s,
 
)
Value:
{ \
b[0][0] += (s)*a[0][0]; \
b[0][1] += (s)*a[0][1]; \
b[0][2] += (s)*a[0][2]; \
b[0][3] += (s)*a[0][3]; \
\
b[1][0] += (s)*a[1][0]; \
b[1][1] += (s)*a[1][1]; \
b[1][2] += (s)*a[1][2]; \
b[1][3] += (s)*a[1][3]; \
\
b[2][0] += (s)*a[2][0]; \
b[2][1] += (s)*a[2][1]; \
b[2][2] += (s)*a[2][2]; \
b[2][3] += (s)*a[2][3]; \
\
b[3][0] += (s)*a[3][0]; \
b[3][1] += (s)*a[3][1]; \
b[3][2] += (s)*a[3][2]; \
b[3][3] += (s)*a[3][3]; \
}

multiply matrix by scalar

Definition at line 791 of file gim_linear_math.h.

◆ ADJOINT_2X2

#define ADJOINT_2X2 (   a,
 
)
Value:
{ \
a[0][0] = (m)[1][1]; \
a[1][0] = -(m)[1][0]; \
a[0][1] = -(m)[0][1]; \
a[1][1] = (m)[0][0]; \
}

adjoint of matrix

Computes adjoint of matrix m, returning a (Note that adjoint is just the transpose of the cofactor matrix)

Definition at line 1221 of file gim_linear_math.h.

◆ ADJOINT_3X3

#define ADJOINT_3X3 (   a,
 
)
Value:
{ \
a[0][0] = m[1][1] * m[2][2] - m[1][2] * m[2][1]; \
a[1][0] = -(m[1][0] * m[2][2] - m[2][0] * m[1][2]); \
a[2][0] = m[1][0] * m[2][1] - m[1][1] * m[2][0]; \
a[0][1] = -(m[0][1] * m[2][2] - m[0][2] * m[2][1]); \
a[1][1] = m[0][0] * m[2][2] - m[0][2] * m[2][0]; \
a[2][1] = -(m[0][0] * m[2][1] - m[0][1] * m[2][0]); \
a[0][2] = m[0][1] * m[1][2] - m[0][2] * m[1][1]; \
a[1][2] = -(m[0][0] * m[1][2] - m[0][2] * m[1][0]); \
a[2][2] = m[0][0]*m[1][1] - m[0][1]*m[1][0]); \
}

adjoint of matrix

Computes adjoint of matrix m, returning a (Note that adjoint is just the transpose of the cofactor matrix)

Definition at line 1234 of file gim_linear_math.h.

◆ ADJOINT_4X4

#define ADJOINT_4X4 (   a,
 
)
Value:
{ \
char _i_, _j_; \
\
for (_i_ = 0; _i_ < 4; _i_++) \
{ \
for (_j_ = 0; _j_ < 4; _j_++) \
{ \
COFACTOR_4X4_IJ(a[_j_][_i_], m, _i_, _j_); \
} \
} \
}

adjoint of matrix

Computes adjoint of matrix m, returning a (Note that adjoint is just the transpose of the cofactor matrix)

Definition at line 1252 of file gim_linear_math.h.

◆ COFACTOR_2X2

#define COFACTOR_2X2 (   a,
 
)
Value:
{ \
a[0][0] = (m)[1][1]; \
a[0][1] = -(m)[1][0]; \
a[1][0] = -(m)[0][1]; \
a[1][1] = (m)[0][0]; \
}

cofactor of matrix

Computes cofactor of matrix m, returning a

Definition at line 1174 of file gim_linear_math.h.

◆ COFACTOR_3X3

#define COFACTOR_3X3 (   a,
 
)
Value:
{ \
a[0][0] = m[1][1] * m[2][2] - m[1][2] * m[2][1]; \
a[0][1] = -(m[1][0] * m[2][2] - m[2][0] * m[1][2]); \
a[0][2] = m[1][0] * m[2][1] - m[1][1] * m[2][0]; \
a[1][0] = -(m[0][1] * m[2][2] - m[0][2] * m[2][1]); \
a[1][1] = m[0][0] * m[2][2] - m[0][2] * m[2][0]; \
a[1][2] = -(m[0][0] * m[2][1] - m[0][1] * m[2][0]); \
a[2][0] = m[0][1] * m[1][2] - m[0][2] * m[1][1]; \
a[2][1] = -(m[0][0] * m[1][2] - m[0][2] * m[1][0]); \
a[2][2] = m[0][0]*m[1][1] - m[0][1]*m[1][0]); \
}

cofactor of matrix

Computes cofactor of matrix m, returning a

Definition at line 1186 of file gim_linear_math.h.

◆ COFACTOR_4X4

#define COFACTOR_4X4 (   a,
 
)
Value:
{ \
int i, j; \
\
for (i = 0; i < 4; i++) \
{ \
for (j = 0; j < 4; j++) \
{ \
COFACTOR_4X4_IJ(a[i][j], m, i, j); \
} \
} \
}

cofactor of matrix

Computes cofactor of matrix m, returning a

Definition at line 1203 of file gim_linear_math.h.

◆ COFACTOR_4X4_IJ

#define COFACTOR_4X4_IJ (   fac,
  m,
  i,
 
)
Value:
{ \
GUINT __ii[4], __jj[4], __k; \
\
for (__k = 0; __k < i; __k++) __ii[__k] = __k; \
for (__k = i; __k < 3; __k++) __ii[__k] = __k + 1; \
for (__k = 0; __k < j; __k++) __jj[__k] = __k; \
for (__k = j; __k < 3; __k++) __jj[__k] = __k + 1; \
\
(fac) = m[__ii[0]][__jj[0]] * (m[__ii[1]][__jj[1]] * m[__ii[2]][__jj[2]] - m[__ii[1]][__jj[2]] * m[__ii[2]][__jj[1]]); \
(fac) -= m[__ii[0]][__jj[1]] * (m[__ii[1]][__jj[0]] * m[__ii[2]][__jj[2]] - m[__ii[1]][__jj[2]] * m[__ii[2]][__jj[0]]); \
(fac) += m[__ii[0]][__jj[2]] * (m[__ii[1]][__jj[0]] * m[__ii[2]][__jj[1]] - m[__ii[1]][__jj[1]] * m[__ii[2]][__jj[0]]); \
\
__k = i + j; \
if (__k != (__k / 2) * 2) \
{ \
(fac) = -(fac); \
} \
}

i,j,th cofactor of a 4x4 matrix

Definition at line 1133 of file gim_linear_math.h.

◆ COPY_MATRIX_2X2

#define COPY_MATRIX_2X2 (   b,
 
)
Value:
{ \
b[0][0] = a[0][0]; \
b[0][1] = a[0][1]; \
\
b[1][0] = a[1][0]; \
b[1][1] = a[1][1]; \
}

matrix copy

Definition at line 553 of file gim_linear_math.h.

◆ COPY_MATRIX_2X3

#define COPY_MATRIX_2X3 (   b,
 
)
Value:
{ \
b[0][0] = a[0][0]; \
b[0][1] = a[0][1]; \
b[0][2] = a[0][2]; \
\
b[1][0] = a[1][0]; \
b[1][1] = a[1][1]; \
b[1][2] = a[1][2]; \
}

matrix copy

Definition at line 563 of file gim_linear_math.h.

◆ COPY_MATRIX_3X3

#define COPY_MATRIX_3X3 (   b,
 
)
Value:
{ \
b[0][0] = a[0][0]; \
b[0][1] = a[0][1]; \
b[0][2] = a[0][2]; \
\
b[1][0] = a[1][0]; \
b[1][1] = a[1][1]; \
b[1][2] = a[1][2]; \
\
b[2][0] = a[2][0]; \
b[2][1] = a[2][1]; \
b[2][2] = a[2][2]; \
}

matrix copy

Definition at line 575 of file gim_linear_math.h.

◆ COPY_MATRIX_4X4

#define COPY_MATRIX_4X4 (   b,
 
)
Value:
{ \
b[0][0] = a[0][0]; \
b[0][1] = a[0][1]; \
b[0][2] = a[0][2]; \
b[0][3] = a[0][3]; \
\
b[1][0] = a[1][0]; \
b[1][1] = a[1][1]; \
b[1][2] = a[1][2]; \
b[1][3] = a[1][3]; \
\
b[2][0] = a[2][0]; \
b[2][1] = a[2][1]; \
b[2][2] = a[2][2]; \
b[2][3] = a[2][3]; \
\
b[3][0] = a[3][0]; \
b[3][1] = a[3][1]; \
b[3][2] = a[3][2]; \
b[3][3] = a[3][3]; \
}

matrix copy

Definition at line 591 of file gim_linear_math.h.

◆ DETERMINANT_2X2

#define DETERMINANT_2X2 (   d,
 
)
Value:
{ \
d = m[0][0] * m[1][1] - m[0][1] * m[1][0]; \
}

determinant of matrix

Computes determinant of matrix m, returning d

Definition at line 1114 of file gim_linear_math.h.

◆ DETERMINANT_3X3

#define DETERMINANT_3X3 (   d,
 
)
Value:
{ \
d = m[0][0] * (m[1][1] * m[2][2] - m[1][2] * m[2][1]); \
d -= m[0][1] * (m[1][0] * m[2][2] - m[1][2] * m[2][0]); \
d += m[0][2] * (m[1][0] * m[2][1] - m[1][1] * m[2][0]); \
}

determinant of matrix

Computes determinant of matrix m, returning d

Definition at line 1123 of file gim_linear_math.h.

◆ DETERMINANT_4X4

#define DETERMINANT_4X4 (   d,
 
)
Value:
{ \
GREAL cofac; \
COFACTOR_4X4_IJ(cofac, m, 0, 0); \
d = m[0][0] * cofac; \
COFACTOR_4X4_IJ(cofac, m, 0, 1); \
d += m[0][1] * cofac; \
COFACTOR_4X4_IJ(cofac, m, 0, 2); \
d += m[0][2] * cofac; \
COFACTOR_4X4_IJ(cofac, m, 0, 3); \
d += m[0][3] * cofac; \
}

determinant of matrix

Computes determinant of matrix m, returning d

Definition at line 1157 of file gim_linear_math.h.

◆ IDENTIFY_MATRIX_3X3

#define IDENTIFY_MATRIX_3X3 (   m)
Value:
{ \
m[0][0] = 1.0; \
m[0][1] = 0.0; \
m[0][2] = 0.0; \
\
m[1][0] = 0.0; \
m[1][1] = 1.0; \
m[1][2] = 0.0; \
\
m[2][0] = 0.0; \
m[2][1] = 0.0; \
m[2][2] = 1.0; \
}

initialize matrix

Definition at line 411 of file gim_linear_math.h.

◆ IDENTIFY_MATRIX_4X4

#define IDENTIFY_MATRIX_4X4 (   m)
Value:
{ \
m[0][0] = 1.0; \
m[0][1] = 0.0; \
m[0][2] = 0.0; \
m[0][3] = 0.0; \
\
m[1][0] = 0.0; \
m[1][1] = 1.0; \
m[1][2] = 0.0; \
m[1][3] = 0.0; \
\
m[2][0] = 0.0; \
m[2][1] = 0.0; \
m[2][2] = 1.0; \
m[2][3] = 0.0; \
\
m[3][0] = 0.0; \
m[3][1] = 0.0; \
m[3][2] = 0.0; \
m[3][3] = 1.0; \
}

initialize matrix

Definition at line 427 of file gim_linear_math.h.

◆ INV_MAT_DOT_VEC_3X3

#define INV_MAT_DOT_VEC_3X3 (   p,
  m,
 
)
Value:
{ \
p[0] = MAT_DOT_COL(m, v, 0); \
p[1] = MAT_DOT_COL(m, v, 1); \
p[2] = MAT_DOT_COL(m, v, 2); \
}
#define MAT_DOT_COL(mat, vec3, colindex)
Returns the dot product between a vec3f and the col of a matrix.

Transpose matrix times vector v is a vec3f and m is a mat4f

Definition at line 1480 of file gim_linear_math.h.

◆ INV_TRANSP_MAT_DOT_VEC_2X2

#define INV_TRANSP_MAT_DOT_VEC_2X2 (   p,
  m,
 
)
Value:
{ \
GREAL det; \
\
det = m[0][0] * m[1][1] - m[0][1] * m[1][0]; \
p[0] = m[1][1] * v[0] - m[1][0] * v[1]; \
p[1] = -m[0][1] * v[0] + m[0][0] * v[1]; \
\
/* if matrix not singular, and not orthonormal, then renormalize */ \
if ((det != 1.0f) && (det != 0.0f)) \
{ \
det = 1.0f / det; \
p[0] *= det; \
p[1] *= det; \
} \
}

inverse transpose of matrix times vector

This macro computes inverse transpose of matrix m, and multiplies vector v into it, to yeild vector p

DANGER !!! Do Not use this on normal vectors!!! It will leave normals the wrong length !!! See macro below for use on normals.

Definition at line 941 of file gim_linear_math.h.

◆ INVERT_2X2

#define INVERT_2X2 (   b,
  det,
 
)
Value:
{ \
GREAL _tmp_; \
DETERMINANT_2X2(det, a); \
_tmp_ = 1.0 / (det); \
SCALE_ADJOINT_2X2(b, _tmp_, a); \
}

inverse of matrix

Compute inverse of matrix a, returning determinant m and inverse b

Definition at line 1318 of file gim_linear_math.h.

◆ INVERT_3X3

#define INVERT_3X3 (   b,
  det,
 
)
Value:
{ \
GREAL _tmp_; \
DETERMINANT_3X3(det, a); \
_tmp_ = 1.0 / (det); \
SCALE_ADJOINT_3X3(b, _tmp_, a); \
}

inverse of matrix

Compute inverse of matrix a, returning determinant m and inverse b

Definition at line 1331 of file gim_linear_math.h.

◆ INVERT_4X4

#define INVERT_4X4 (   b,
  det,
 
)
Value:
{ \
GREAL _tmp_; \
DETERMINANT_4X4(det, a); \
_tmp_ = 1.0 / (det); \
SCALE_ADJOINT_4X4(b, _tmp_, a); \
}

inverse of matrix

Compute inverse of matrix a, returning determinant m and inverse b

Definition at line 1344 of file gim_linear_math.h.

◆ MAT_DOT_COL

#define MAT_DOT_COL (   mat,
  vec3,
  colindex 
)    (vec3[0] * mat[0][colindex] + vec3[1] * mat[1][colindex] + vec3[2] * mat[2][colindex])

Returns the dot product between a vec3f and the col of a matrix.

Definition at line 1468 of file gim_linear_math.h.

◆ MAT_DOT_COL2

#define MAT_DOT_COL2 (   mat,
  vec2,
  colindex 
)    (vec2[0] * mat[0][colindex] + vec2[1] * mat[1][colindex])

Returns the dot product between a vec2f and the col of a matrix.

Definition at line 1471 of file gim_linear_math.h.

◆ MAT_DOT_COL4

#define MAT_DOT_COL4 (   mat,
  vec4,
  colindex 
)    (vec4[0] * mat[0][colindex] + vec4[1] * mat[1][colindex] + vec4[2] * mat[2][colindex] + vec4[3] * mat[3][colindex])

Returns the dot product between a vec4f and the col of a matrix.

Definition at line 1474 of file gim_linear_math.h.

◆ MAT_DOT_ROW

#define MAT_DOT_ROW (   mat,
  vec3,
  rowindex 
)    (vec3[0] * mat[rowindex][0] + vec3[1] * mat[rowindex][1] + vec3[2] * mat[rowindex][2])

Returns the dot product between a vec3f and the row of a matrix.

Definition at line 1459 of file gim_linear_math.h.

◆ MAT_DOT_ROW2

#define MAT_DOT_ROW2 (   mat,
  vec2,
  rowindex 
)    (vec2[0] * mat[rowindex][0] + vec2[1] * mat[rowindex][1])

Returns the dot product between a vec2f and the row of a matrix.

Definition at line 1462 of file gim_linear_math.h.

◆ MAT_DOT_ROW4

#define MAT_DOT_ROW4 (   mat,
  vec4,
  rowindex 
)    (vec4[0] * mat[rowindex][0] + vec4[1] * mat[rowindex][1] + vec4[2] * mat[rowindex][2] + vec4[3] * mat[rowindex][3])

Returns the dot product between a vec4f and the row of a matrix.

Definition at line 1465 of file gim_linear_math.h.

◆ MAT_DOT_VEC_2X2

#define MAT_DOT_VEC_2X2 (   p,
  m,
 
)
Value:
{ \
p[0] = m[0][0] * v[0] + m[0][1] * v[1]; \
p[1] = m[1][0] * v[0] + m[1][1] * v[1]; \
}

matrix times vector

Definition at line 868 of file gim_linear_math.h.

◆ MAT_DOT_VEC_2X3

#define MAT_DOT_VEC_2X3 (   p,
  m,
 
)
Value:
{ \
p[0] = m[0][0] * v[0] + m[0][1] * v[1] + m[0][2]; \
p[1] = m[1][0] * v[0] + m[1][1] * v[1] + m[1][2]; \
}

The matrix is assumed to be an affine matrix, with last two entries representing a translation.

affine matrix times vector

Definition at line 917 of file gim_linear_math.h.

◆ MAT_DOT_VEC_3X3

#define MAT_DOT_VEC_3X3 (   p,
  m,
 
)
Value:
{ \
p[0] = m[0][0] * v[0] + m[0][1] * v[1] + m[0][2] * v[2]; \
p[1] = m[1][0] * v[0] + m[1][1] * v[1] + m[1][2] * v[2]; \
p[2] = m[2][0] * v[0] + m[2][1] * v[1] + m[2][2] * v[2]; \
}

matrix times vector

Definition at line 875 of file gim_linear_math.h.

◆ MAT_DOT_VEC_3X4

#define MAT_DOT_VEC_3X4 (   p,
  m,
 
)
Value:
{ \
p[0] = m[0][0] * v[0] + m[0][1] * v[1] + m[0][2] * v[2] + m[0][3]; \
p[1] = m[1][0] * v[0] + m[1][1] * v[1] + m[1][2] * v[2] + m[1][3]; \
p[2] = m[2][0] * v[0] + m[2][1] * v[1] + m[2][2] * v[2] + m[2][3]; \
}

matrix times vector v is a vec3f and m is a mat4f
Last column is added as the position

Definition at line 898 of file gim_linear_math.h.

◆ MAT_DOT_VEC_4X4

#define MAT_DOT_VEC_4X4 (   p,
  m,
 
)
Value:
{ \
p[0] = m[0][0] * v[0] + m[0][1] * v[1] + m[0][2] * v[2] + m[0][3] * v[3]; \
p[1] = m[1][0] * v[0] + m[1][1] * v[1] + m[1][2] * v[2] + m[1][3] * v[3]; \
p[2] = m[2][0] * v[0] + m[2][1] * v[1] + m[2][2] * v[2] + m[2][3] * v[3]; \
p[3] = m[3][0] * v[0] + m[3][1] * v[1] + m[3][2] * v[2] + m[3][3] * v[3]; \
}

matrix times vector v is a vec4f

Definition at line 885 of file gim_linear_math.h.

◆ MAT_GET_COL

#define MAT_GET_COL (   mat,
  vec3,
  colindex 
)
Value:
{ \
vec3[0] = mat[0][colindex]; \
vec3[1] = mat[1][colindex]; \
vec3[2] = mat[2][colindex]; \
}

Get the triple(3) col of a transform matrix.

Definition at line 1377 of file gim_linear_math.h.

◆ MAT_GET_COL2

#define MAT_GET_COL2 (   mat,
  vec2,
  colindex 
)
Value:
{ \
vec2[0] = mat[0][colindex]; \
vec2[1] = mat[1][colindex]; \
}

Get the tuple(2) col of a transform matrix.

Definition at line 1385 of file gim_linear_math.h.

◆ MAT_GET_COL4

#define MAT_GET_COL4 (   mat,
  vec4,
  colindex 
)
Value:
{ \
vec4[0] = mat[0][colindex]; \
vec4[1] = mat[1][colindex]; \
vec4[2] = mat[2][colindex]; \
vec4[3] = mat[3][colindex]; \
}

Get the quad (4) col of a transform matrix.

Definition at line 1392 of file gim_linear_math.h.

◆ MAT_GET_ROW

#define MAT_GET_ROW (   mat,
  vec3,
  rowindex 
)
Value:
{ \
vec3[0] = mat[rowindex][0]; \
vec3[1] = mat[rowindex][1]; \
vec3[2] = mat[rowindex][2]; \
}

Get the triple(3) row of a transform matrix.

Definition at line 1353 of file gim_linear_math.h.

◆ MAT_GET_ROW2

#define MAT_GET_ROW2 (   mat,
  vec2,
  rowindex 
)
Value:
{ \
vec2[0] = mat[rowindex][0]; \
vec2[1] = mat[rowindex][1]; \
}

Get the tuple(2) row of a transform matrix.

Definition at line 1361 of file gim_linear_math.h.

◆ MAT_GET_ROW4

#define MAT_GET_ROW4 (   mat,
  vec4,
  rowindex 
)
Value:
{ \
vec4[0] = mat[rowindex][0]; \
vec4[1] = mat[rowindex][1]; \
vec4[2] = mat[rowindex][2]; \
vec4[3] = mat[rowindex][3]; \
}

Get the quad (4) row of a transform matrix.

Definition at line 1368 of file gim_linear_math.h.

◆ MAT_GET_TRANSLATION

#define MAT_GET_TRANSLATION (   mat,
  vec3 
)
Value:
{ \
vec3[0] = mat[0][3]; \
vec3[1] = mat[1][3]; \
vec3[2] = mat[2][3]; \
}

Get the triple(3) col of a transform matrix.

Definition at line 1443 of file gim_linear_math.h.

◆ MAT_GET_X

#define MAT_GET_X (   mat,
  vec3 
)
Value:
{ \
MAT_GET_COL(mat, vec3, 0); \
}

Get the triple(3) col of a transform matrix.

Definition at line 1401 of file gim_linear_math.h.

◆ MAT_GET_Y

#define MAT_GET_Y (   mat,
  vec3 
)
Value:
{ \
MAT_GET_COL(mat, vec3, 1); \
}

Get the triple(3) col of a transform matrix.

Definition at line 1407 of file gim_linear_math.h.

◆ MAT_GET_Z

#define MAT_GET_Z (   mat,
  vec3 
)
Value:
{ \
MAT_GET_COL(mat, vec3, 2); \
}

Get the triple(3) col of a transform matrix.

Definition at line 1413 of file gim_linear_math.h.

◆ MAT_SET_TRANSLATION

#define MAT_SET_TRANSLATION (   mat,
  vec3 
)
Value:
{ \
mat[0][3] = vec3[0]; \
mat[1][3] = vec3[1]; \
mat[2][3] = vec3[2]; \
}

Set the triple(3) col of a transform matrix.

Definition at line 1451 of file gim_linear_math.h.

◆ MAT_SET_X

#define MAT_SET_X (   mat,
  vec3 
)
Value:
{ \
mat[0][0] = vec3[0]; \
mat[1][0] = vec3[1]; \
mat[2][0] = vec3[2]; \
}

Get the triple(3) col of a transform matrix.

Definition at line 1419 of file gim_linear_math.h.

◆ MAT_SET_Y

#define MAT_SET_Y (   mat,
  vec3 
)
Value:
{ \
mat[0][1] = vec3[0]; \
mat[1][1] = vec3[1]; \
mat[2][1] = vec3[2]; \
}

Get the triple(3) col of a transform matrix.

Definition at line 1427 of file gim_linear_math.h.

◆ MAT_SET_Z

#define MAT_SET_Z (   mat,
  vec3 
)
Value:
{ \
mat[0][2] = vec3[0]; \
mat[1][2] = vec3[1]; \
mat[2][2] = vec3[2]; \
}

Get the triple(3) col of a transform matrix.

Definition at line 1435 of file gim_linear_math.h.

◆ MAT_TRANSFORM_PLANE_4X4

#define MAT_TRANSFORM_PLANE_4X4 (   pout,
  m,
  plane 
)
Value:
{ \
pout[0] = m[0][0] * plane[0] + m[0][1] * plane[1] + m[0][2] * plane[2]; \
pout[1] = m[1][0] * plane[0] + m[1][1] * plane[1] + m[1][2] * plane[2]; \
pout[2] = m[2][0] * plane[0] + m[2][1] * plane[1] + m[2][2] * plane[2]; \
pout[3] = m[0][3] * pout[0] + m[1][3] * pout[1] + m[2][3] * pout[2] + plane[3]; \
}

Transform a plane.

Definition at line 924 of file gim_linear_math.h.

◆ MATRIX_PRODUCT_2X2

#define MATRIX_PRODUCT_2X2 (   c,
  a,
 
)
Value:
{ \
c[0][0] = a[0][0] * b[0][0] + a[0][1] * b[1][0]; \
c[0][1] = a[0][0] * b[0][1] + a[0][1] * b[1][1]; \
\
c[1][0] = a[1][0] * b[0][0] + a[1][1] * b[1][0]; \
c[1][1] = a[1][0] * b[0][1] + a[1][1] * b[1][1]; \
}

matrix product

c[x][y] = a[x][0]*b[0][y]+a[x][1]*b[1][y]+a[x][2]*b[2][y]+a[x][3]*b[3][y];

Definition at line 816 of file gim_linear_math.h.

◆ MATRIX_PRODUCT_3X3

#define MATRIX_PRODUCT_3X3 (   c,
  a,
 
)
Value:
{ \
c[0][0] = a[0][0] * b[0][0] + a[0][1] * b[1][0] + a[0][2] * b[2][0]; \
c[0][1] = a[0][0] * b[0][1] + a[0][1] * b[1][1] + a[0][2] * b[2][1]; \
c[0][2] = a[0][0] * b[0][2] + a[0][1] * b[1][2] + a[0][2] * b[2][2]; \
\
c[1][0] = a[1][0] * b[0][0] + a[1][1] * b[1][0] + a[1][2] * b[2][0]; \
c[1][1] = a[1][0] * b[0][1] + a[1][1] * b[1][1] + a[1][2] * b[2][1]; \
c[1][2] = a[1][0] * b[0][2] + a[1][1] * b[1][2] + a[1][2] * b[2][2]; \
\
c[2][0] = a[2][0] * b[0][0] + a[2][1] * b[1][0] + a[2][2] * b[2][0]; \
c[2][1] = a[2][0] * b[0][1] + a[2][1] * b[1][1] + a[2][2] * b[2][1]; \
c[2][2] = a[2][0] * b[0][2] + a[2][1] * b[1][2] + a[2][2] * b[2][2]; \
}

matrix product

c[x][y] = a[x][0]*b[0][y]+a[x][1]*b[1][y]+a[x][2]*b[2][y]+a[x][3]*b[3][y];

Definition at line 827 of file gim_linear_math.h.

◆ MATRIX_PRODUCT_4X4

#define MATRIX_PRODUCT_4X4 (   c,
  a,
 
)
Value:
{ \
c[0][0] = a[0][0] * b[0][0] + a[0][1] * b[1][0] + a[0][2] * b[2][0] + a[0][3] * b[3][0]; \
c[0][1] = a[0][0] * b[0][1] + a[0][1] * b[1][1] + a[0][2] * b[2][1] + a[0][3] * b[3][1]; \
c[0][2] = a[0][0] * b[0][2] + a[0][1] * b[1][2] + a[0][2] * b[2][2] + a[0][3] * b[3][2]; \
c[0][3] = a[0][0] * b[0][3] + a[0][1] * b[1][3] + a[0][2] * b[2][3] + a[0][3] * b[3][3]; \
\
c[1][0] = a[1][0] * b[0][0] + a[1][1] * b[1][0] + a[1][2] * b[2][0] + a[1][3] * b[3][0]; \
c[1][1] = a[1][0] * b[0][1] + a[1][1] * b[1][1] + a[1][2] * b[2][1] + a[1][3] * b[3][1]; \
c[1][2] = a[1][0] * b[0][2] + a[1][1] * b[1][2] + a[1][2] * b[2][2] + a[1][3] * b[3][2]; \
c[1][3] = a[1][0] * b[0][3] + a[1][1] * b[1][3] + a[1][2] * b[2][3] + a[1][3] * b[3][3]; \
\
c[2][0] = a[2][0] * b[0][0] + a[2][1] * b[1][0] + a[2][2] * b[2][0] + a[2][3] * b[3][0]; \
c[2][1] = a[2][0] * b[0][1] + a[2][1] * b[1][1] + a[2][2] * b[2][1] + a[2][3] * b[3][1]; \
c[2][2] = a[2][0] * b[0][2] + a[2][1] * b[1][2] + a[2][2] * b[2][2] + a[2][3] * b[3][2]; \
c[2][3] = a[2][0] * b[0][3] + a[2][1] * b[1][3] + a[2][2] * b[2][3] + a[2][3] * b[3][3]; \
\
c[3][0] = a[3][0] * b[0][0] + a[3][1] * b[1][0] + a[3][2] * b[2][0] + a[3][3] * b[3][0]; \
c[3][1] = a[3][0] * b[0][1] + a[3][1] * b[1][1] + a[3][2] * b[2][1] + a[3][3] * b[3][1]; \
c[3][2] = a[3][0] * b[0][2] + a[3][1] * b[1][2] + a[3][2] * b[2][2] + a[3][3] * b[3][2]; \
c[3][3] = a[3][0] * b[0][3] + a[3][1] * b[1][3] + a[3][2] * b[2][3] + a[3][3] * b[3][3]; \
}

matrix product

c[x][y] = a[x][0]*b[0][y]+a[x][1]*b[1][y]+a[x][2]*b[2][y]+a[x][3]*b[3][y];

Definition at line 844 of file gim_linear_math.h.

◆ NORM_XFORM_2X2

#define NORM_XFORM_2X2 (   p,
  m,
 
)
Value:
{ \
GREAL len; \
\
/* do nothing if off-diagonals are zero and diagonals are \
* equal */ \
if ((m[0][1] != 0.0) || (m[1][0] != 0.0) || (m[0][0] != m[1][1])) \
{ \
p[0] = m[1][1] * v[0] - m[1][0] * v[1]; \
p[1] = -m[0][1] * v[0] + m[0][0] * v[1]; \
\
len = p[0] * p[0] + p[1] * p[1]; \
GIM_INV_SQRT(len, len); \
p[0] *= len; \
p[1] *= len; \
} \
else \
{ \
VEC_COPY_2(p, v); \
} \
}

transform normal vector by inverse transpose of matrix and then renormalize the vector

This macro computes inverse transpose of matrix m, and multiplies vector v into it, to yeild vector p Vector p is then normalized.

Definition at line 965 of file gim_linear_math.h.

◆ OUTER_PRODUCT_2X2

#define OUTER_PRODUCT_2X2 (   m,
  v,
 
)
Value:
{ \
m[0][0] = v[0] * t[0]; \
m[0][1] = v[0] * t[1]; \
\
m[1][0] = v[1] * t[0]; \
m[1][1] = v[1] * t[1]; \
}

outer product of vector times vector transpose

The outer product of vector v and vector transpose t yeilds dyadic matrix m.

Definition at line 991 of file gim_linear_math.h.

◆ OUTER_PRODUCT_3X3

#define OUTER_PRODUCT_3X3 (   m,
  v,
 
)
Value:
{ \
m[0][0] = v[0] * t[0]; \
m[0][1] = v[0] * t[1]; \
m[0][2] = v[0] * t[2]; \
\
m[1][0] = v[1] * t[0]; \
m[1][1] = v[1] * t[1]; \
m[1][2] = v[1] * t[2]; \
\
m[2][0] = v[2] * t[0]; \
m[2][1] = v[2] * t[1]; \
m[2][2] = v[2] * t[2]; \
}

outer product of vector times vector transpose

The outer product of vector v and vector transpose t yeilds dyadic matrix m.

Definition at line 1005 of file gim_linear_math.h.

◆ OUTER_PRODUCT_4X4

#define OUTER_PRODUCT_4X4 (   m,
  v,
 
)
Value:
{ \
m[0][0] = v[0] * t[0]; \
m[0][1] = v[0] * t[1]; \
m[0][2] = v[0] * t[2]; \
m[0][3] = v[0] * t[3]; \
\
m[1][0] = v[1] * t[0]; \
m[1][1] = v[1] * t[1]; \
m[1][2] = v[1] * t[2]; \
m[1][3] = v[1] * t[3]; \
\
m[2][0] = v[2] * t[0]; \
m[2][1] = v[2] * t[1]; \
m[2][2] = v[2] * t[2]; \
m[2][3] = v[2] * t[3]; \
\
m[3][0] = v[3] * t[0]; \
m[3][1] = v[3] * t[1]; \
m[3][2] = v[3] * t[2]; \
m[3][3] = v[3] * t[3]; \
}

outer product of vector times vector transpose

The outer product of vector v and vector transpose t yeilds dyadic matrix m.

Definition at line 1025 of file gim_linear_math.h.

◆ ROTX_CS

#define ROTX_CS (   m,
  cosine,
  sine 
)
Value:
{ \
/* rotation about the x-axis */ \
\
m[0][0] = 1.0; \
m[0][1] = 0.0; \
m[0][2] = 0.0; \
m[0][3] = 0.0; \
\
m[1][0] = 0.0; \
m[1][1] = (cosine); \
m[1][2] = (sine); \
m[1][3] = 0.0; \
\
m[2][0] = 0.0; \
m[2][1] = -(sine); \
m[2][2] = (cosine); \
m[2][3] = 0.0; \
\
m[3][0] = 0.0; \
m[3][1] = 0.0; \
m[3][2] = 0.0; \
m[3][3] = 1.0; \
}

matrix rotation X

Definition at line 475 of file gim_linear_math.h.

◆ ROTY_CS

#define ROTY_CS (   m,
  cosine,
  sine 
)
Value:
{ \
/* rotation about the y-axis */ \
\
m[0][0] = (cosine); \
m[0][1] = 0.0; \
m[0][2] = -(sine); \
m[0][3] = 0.0; \
\
m[1][0] = 0.0; \
m[1][1] = 1.0; \
m[1][2] = 0.0; \
m[1][3] = 0.0; \
\
m[2][0] = (sine); \
m[2][1] = 0.0; \
m[2][2] = (cosine); \
m[2][3] = 0.0; \
\
m[3][0] = 0.0; \
m[3][1] = 0.0; \
m[3][2] = 0.0; \
m[3][3] = 1.0; \
}

matrix rotation Y

Definition at line 501 of file gim_linear_math.h.

◆ ROTZ_CS

#define ROTZ_CS (   m,
  cosine,
  sine 
)
Value:
{ \
/* rotation about the z-axis */ \
\
m[0][0] = (cosine); \
m[0][1] = (sine); \
m[0][2] = 0.0; \
m[0][3] = 0.0; \
\
m[1][0] = -(sine); \
m[1][1] = (cosine); \
m[1][2] = 0.0; \
m[1][3] = 0.0; \
\
m[2][0] = 0.0; \
m[2][1] = 0.0; \
m[2][2] = 1.0; \
m[2][3] = 0.0; \
\
m[3][0] = 0.0; \
m[3][1] = 0.0; \
m[3][2] = 0.0; \
m[3][3] = 1.0; \
}

matrix rotation Z

Definition at line 527 of file gim_linear_math.h.

◆ SCALE_ADJOINT_2X2

#define SCALE_ADJOINT_2X2 (   a,
  s,
 
)
Value:
{ \
a[0][0] = (s)*m[1][1]; \
a[1][0] = -(s)*m[1][0]; \
a[0][1] = -(s)*m[0][1]; \
a[1][1] = (s)*m[0][0]; \
}

compute adjoint of matrix and scale

Computes adjoint of matrix m, scales it by s, returning a

Definition at line 1269 of file gim_linear_math.h.

◆ SCALE_ADJOINT_3X3

#define SCALE_ADJOINT_3X3 (   a,
  s,
 
)
Value:
{ \
a[0][0] = (s) * (m[1][1] * m[2][2] - m[1][2] * m[2][1]); \
a[1][0] = (s) * (m[1][2] * m[2][0] - m[1][0] * m[2][2]); \
a[2][0] = (s) * (m[1][0] * m[2][1] - m[1][1] * m[2][0]); \
\
a[0][1] = (s) * (m[0][2] * m[2][1] - m[0][1] * m[2][2]); \
a[1][1] = (s) * (m[0][0] * m[2][2] - m[0][2] * m[2][0]); \
a[2][1] = (s) * (m[0][1] * m[2][0] - m[0][0] * m[2][1]); \
\
a[0][2] = (s) * (m[0][1] * m[1][2] - m[0][2] * m[1][1]); \
a[1][2] = (s) * (m[0][2] * m[1][0] - m[0][0] * m[1][2]); \
a[2][2] = (s) * (m[0][0] * m[1][1] - m[0][1] * m[1][0]); \
}

compute adjoint of matrix and scale

Computes adjoint of matrix m, scales it by s, returning a

Definition at line 1281 of file gim_linear_math.h.

◆ SCALE_ADJOINT_4X4

#define SCALE_ADJOINT_4X4 (   a,
  s,
 
)
Value:
{ \
char _i_, _j_; \
for (_i_ = 0; _i_ < 4; _i_++) \
{ \
for (_j_ = 0; _j_ < 4; _j_++) \
{ \
COFACTOR_4X4_IJ(a[_j_][_i_], m, _i_, _j_); \
a[_j_][_i_] *= s; \
} \
} \
}

compute adjoint of matrix and scale

Computes adjoint of matrix m, scales it by s, returning a

Definition at line 1300 of file gim_linear_math.h.

◆ SCALE_MATRIX_2X2

#define SCALE_MATRIX_2X2 (   b,
  s,
 
)
Value:
{ \
b[0][0] = (s)*a[0][0]; \
b[0][1] = (s)*a[0][1]; \
\
b[1][0] = (s)*a[1][0]; \
b[1][1] = (s)*a[1][1]; \
}

multiply matrix by scalar

Definition at line 665 of file gim_linear_math.h.

◆ SCALE_MATRIX_3X3

#define SCALE_MATRIX_3X3 (   b,
  s,
 
)
Value:
{ \
b[0][0] = (s)*a[0][0]; \
b[0][1] = (s)*a[0][1]; \
b[0][2] = (s)*a[0][2]; \
\
b[1][0] = (s)*a[1][0]; \
b[1][1] = (s)*a[1][1]; \
b[1][2] = (s)*a[1][2]; \
\
b[2][0] = (s)*a[2][0]; \
b[2][1] = (s)*a[2][1]; \
b[2][2] = (s)*a[2][2]; \
}

multiply matrix by scalar

Definition at line 675 of file gim_linear_math.h.

◆ SCALE_MATRIX_4X4

#define SCALE_MATRIX_4X4 (   b,
  s,
 
)
Value:
{ \
b[0][0] = (s)*a[0][0]; \
b[0][1] = (s)*a[0][1]; \
b[0][2] = (s)*a[0][2]; \
b[0][3] = (s)*a[0][3]; \
\
b[1][0] = (s)*a[1][0]; \
b[1][1] = (s)*a[1][1]; \
b[1][2] = (s)*a[1][2]; \
b[1][3] = (s)*a[1][3]; \
\
b[2][0] = (s)*a[2][0]; \
b[2][1] = (s)*a[2][1]; \
b[2][2] = (s)*a[2][2]; \
b[2][3] = (s)*a[2][3]; \
\
b[3][0] = s * a[3][0]; \
b[3][1] = s * a[3][1]; \
b[3][2] = s * a[3][2]; \
b[3][3] = s * a[3][3]; \
}

multiply matrix by scalar

Definition at line 691 of file gim_linear_math.h.

◆ SCALE_VEC_MATRIX_2X2

#define SCALE_VEC_MATRIX_2X2 (   b,
  svec,
 
)
Value:
{ \
b[0][0] = svec[0] * a[0][0]; \
b[1][0] = svec[0] * a[1][0]; \
\
b[0][1] = svec[1] * a[0][1]; \
b[1][1] = svec[1] * a[1][1]; \
}

multiply matrix by scalar

Definition at line 715 of file gim_linear_math.h.

◆ SCALE_VEC_MATRIX_3X3

#define SCALE_VEC_MATRIX_3X3 (   b,
  svec,
 
)
Value:
{ \
b[0][0] = svec[0] * a[0][0]; \
b[1][0] = svec[0] * a[1][0]; \
b[2][0] = svec[0] * a[2][0]; \
\
b[0][1] = svec[1] * a[0][1]; \
b[1][1] = svec[1] * a[1][1]; \
b[2][1] = svec[1] * a[2][1]; \
\
b[0][2] = svec[2] * a[0][2]; \
b[1][2] = svec[2] * a[1][2]; \
b[2][2] = svec[2] * a[2][2]; \
}

multiply matrix by scalar. Each columns is scaled by each scalar vector component

Definition at line 725 of file gim_linear_math.h.

◆ SCALE_VEC_MATRIX_4X4

#define SCALE_VEC_MATRIX_4X4 (   b,
  svec,
 
)
Value:
{ \
b[0][0] = svec[0] * a[0][0]; \
b[1][0] = svec[0] * a[1][0]; \
b[2][0] = svec[0] * a[2][0]; \
b[3][0] = svec[0] * a[3][0]; \
\
b[0][1] = svec[1] * a[0][1]; \
b[1][1] = svec[1] * a[1][1]; \
b[2][1] = svec[1] * a[2][1]; \
b[3][1] = svec[1] * a[3][1]; \
\
b[0][2] = svec[2] * a[0][2]; \
b[1][2] = svec[2] * a[1][2]; \
b[2][2] = svec[2] * a[2][2]; \
b[3][2] = svec[2] * a[3][2]; \
\
b[0][3] = svec[3] * a[0][3]; \
b[1][3] = svec[3] * a[1][3]; \
b[2][3] = svec[3] * a[2][3]; \
b[3][3] = svec[3] * a[3][3]; \
}

multiply matrix by scalar

Definition at line 741 of file gim_linear_math.h.

◆ TRANSPOSE_MATRIX_2X2

#define TRANSPOSE_MATRIX_2X2 (   b,
 
)
Value:
{ \
b[0][0] = a[0][0]; \
b[0][1] = a[1][0]; \
\
b[1][0] = a[0][1]; \
b[1][1] = a[1][1]; \
}

matrix transpose

Definition at line 615 of file gim_linear_math.h.

◆ TRANSPOSE_MATRIX_3X3

#define TRANSPOSE_MATRIX_3X3 (   b,
 
)
Value:
{ \
b[0][0] = a[0][0]; \
b[0][1] = a[1][0]; \
b[0][2] = a[2][0]; \
\
b[1][0] = a[0][1]; \
b[1][1] = a[1][1]; \
b[1][2] = a[2][1]; \
\
b[2][0] = a[0][2]; \
b[2][1] = a[1][2]; \
b[2][2] = a[2][2]; \
}

matrix transpose

Definition at line 625 of file gim_linear_math.h.

◆ TRANSPOSE_MATRIX_4X4

#define TRANSPOSE_MATRIX_4X4 (   b,
 
)
Value:
{ \
b[0][0] = a[0][0]; \
b[0][1] = a[1][0]; \
b[0][2] = a[2][0]; \
b[0][3] = a[3][0]; \
\
b[1][0] = a[0][1]; \
b[1][1] = a[1][1]; \
b[1][2] = a[2][1]; \
b[1][3] = a[3][1]; \
\
b[2][0] = a[0][2]; \
b[2][1] = a[1][2]; \
b[2][2] = a[2][2]; \
b[2][3] = a[3][2]; \
\
b[3][0] = a[0][3]; \
b[3][1] = a[1][3]; \
b[3][2] = a[2][3]; \
b[3][3] = a[3][3]; \
}

matrix transpose

Definition at line 641 of file gim_linear_math.h.

◆ VEC_ACCUM

#define VEC_ACCUM (   c,
  a,
 
)
Value:
{ \
(c)[0] += (a) * (b)[0]; \
(c)[1] += (a) * (b)[1]; \
(c)[2] += (a) * (b)[2]; \
}

accumulate scaled vector

Definition at line 170 of file gim_linear_math.h.

◆ VEC_ACCUM_2

#define VEC_ACCUM_2 (   c,
  a,
 
)
Value:
{ \
(c)[0] += (a) * (b)[0]; \
(c)[1] += (a) * (b)[1]; \
}

accumulate scaled vector

Definition at line 163 of file gim_linear_math.h.

◆ VEC_ACCUM_4

#define VEC_ACCUM_4 (   c,
  a,
 
)
Value:
{ \
(c)[0] += (a) * (b)[0]; \
(c)[1] += (a) * (b)[1]; \
(c)[2] += (a) * (b)[2]; \
(c)[3] += (a) * (b)[3]; \
}

accumulate scaled vector

Definition at line 178 of file gim_linear_math.h.

◆ VEC_BLEND

#define VEC_BLEND (   vr,
  a,
  b,
 
)    VEC_BLEND_AB(vr, (1 - s), a, s, b)

Vector blending Takes two vectors a, b, blends them together with s <=1

Definition at line 362 of file gim_linear_math.h.

◆ VEC_BLEND_AB

#define VEC_BLEND_AB (   vr,
  sa,
  a,
  sb,
 
)
Value:
{ \
vr[0] = (sa) * (a)[0] + (sb) * (b)[0]; \
vr[1] = (sa) * (a)[1] + (sb) * (b)[1]; \
vr[2] = (sa) * (a)[2] + (sb) * (b)[2]; \
}

Vector blending Takes two vectors a, b, blends them together with two scalars

Definition at line 353 of file gim_linear_math.h.

◆ VEC_CONJUGATE_LENGTH

#define VEC_CONJUGATE_LENGTH (   a,
 
)
Value:
{ \
GREAL _pp = 1.0 - a[0] * a[0] - a[1] * a[1] - a[2] * a[2]; \
GIM_SQRT(_pp, l); \
}

Vector length.

Definition at line 260 of file gim_linear_math.h.

◆ VEC_COPY

#define VEC_COPY (   b,
 
)
Value:
{ \
(b)[0] = (a)[0]; \
(b)[1] = (a)[1]; \
(b)[2] = (a)[2]; \
}

Copy 3D vector.

Definition at line 66 of file gim_linear_math.h.

◆ VEC_COPY_2

#define VEC_COPY_2 (   b,
 
)
Value:
{ \
(b)[0] = (a)[0]; \
(b)[1] = (a)[1]; \
}

Vector copy.

Definition at line 59 of file gim_linear_math.h.

◆ VEC_COPY_4

#define VEC_COPY_4 (   b,
 
)
Value:
{ \
(b)[0] = (a)[0]; \
(b)[1] = (a)[1]; \
(b)[2] = (a)[2]; \
(b)[3] = (a)[3]; \
}

Copy 4D vector.

Definition at line 74 of file gim_linear_math.h.

◆ VEC_CROSS

#define VEC_CROSS (   c,
  a,
 
)
Value:
{ \
c[0] = (a)[1] * (b)[2] - (a)[2] * (b)[1]; \
c[1] = (a)[2] * (b)[0] - (a)[0] * (b)[2]; \
c[2] = (a)[0] * (b)[1] - (a)[1] * (b)[0]; \
}

Vector cross.

Definition at line 294 of file gim_linear_math.h.

◆ VEC_DIFF

#define VEC_DIFF (   v21,
  v2,
  v1 
)
Value:
{ \
(v21)[0] = (v2)[0] - (v1)[0]; \
(v21)[1] = (v2)[1] - (v1)[1]; \
(v21)[2] = (v2)[2] - (v1)[2]; \
}

Vector difference.

Definition at line 98 of file gim_linear_math.h.

◆ VEC_DIFF_2

#define VEC_DIFF_2 (   v21,
  v2,
  v1 
)
Value:
{ \
(v21)[0] = (v2)[0] - (v1)[0]; \
(v21)[1] = (v2)[1] - (v1)[1]; \
}

Vector difference.

Definition at line 91 of file gim_linear_math.h.

◆ VEC_DIFF_4

#define VEC_DIFF_4 (   v21,
  v2,
  v1 
)
Value:
{ \
(v21)[0] = (v2)[0] - (v1)[0]; \
(v21)[1] = (v2)[1] - (v1)[1]; \
(v21)[2] = (v2)[2] - (v1)[2]; \
(v21)[3] = (v2)[3] - (v1)[3]; \
}

Vector difference.

Definition at line 106 of file gim_linear_math.h.

◆ VEC_DISTANCE

#define VEC_DISTANCE (   _len,
  _va,
  _vb 
)
Value:
{ \
vec3f _tmp_; \
VEC_DIFF(_tmp_, _vb, _va); \
VEC_LENGTH(_tmp_, _len); \
}

distance between two points

Definition at line 252 of file gim_linear_math.h.

◆ VEC_DOT

#define VEC_DOT (   a,
 
)    ((a)[0] * (b)[0] + (a)[1] * (b)[1] + (a)[2] * (b)[2])

Vector dot product.

Definition at line 190 of file gim_linear_math.h.

◆ VEC_DOT_2

#define VEC_DOT_2 (   a,
 
)    ((a)[0] * (b)[0] + (a)[1] * (b)[1])

Vector dot product.

Definition at line 187 of file gim_linear_math.h.

◆ VEC_DOT_4

#define VEC_DOT_4 (   a,
 
)    ((a)[0] * (b)[0] + (a)[1] * (b)[1] + (a)[2] * (b)[2] + (a)[3] * (b)[3])

Vector dot product.

Definition at line 193 of file gim_linear_math.h.

◆ VEC_DOT_MAT_3X3

#define VEC_DOT_MAT_3X3 (   p,
  v,
 
)
Value:
{ \
p[0] = v[0] * m[0][0] + v[1] * m[1][0] + v[2] * m[2][0]; \
p[1] = v[0] * m[0][1] + v[1] * m[1][1] + v[2] * m[2][1]; \
p[2] = v[0] * m[0][2] + v[1] * m[1][2] + v[2] * m[2][2]; \
}

vector transpose times matrix

p[j] = v[0]*m[0][j] + v[1]*m[1][j] + v[2]*m[2][j];

Definition at line 907 of file gim_linear_math.h.

◆ VEC_EQUAL

#define VEC_EQUAL (   v1,
  v2 
)    (v1[0] == v2[0] && v1[1] == v2[1] && v1[2] == v2[2])

Definition at line 384 of file gim_linear_math.h.

◆ VEC_IMPACT

#define VEC_IMPACT (   bsq,
  direction,
  position 
)
Value:
{ \
VEC_IMPACT_SQ(bsq, direction, position); \
GIM_SQRT(bsq, bsq); \
}

vector impact parameter

Definition at line 203 of file gim_linear_math.h.

◆ VEC_IMPACT_SQ

#define VEC_IMPACT_SQ (   bsq,
  direction,
  position 
)
Value:
{ \
GREAL _llel_ = VEC_DOT(direction, position); \
bsq = VEC_DOT(position, position) - _llel_ * _llel_; \
}
#define VEC_DOT(a, b)
Vector dot product.

vector impact parameter (squared)

Definition at line 196 of file gim_linear_math.h.

◆ VEC_INV_LENGTH

#define VEC_INV_LENGTH (   a,
 
)
Value:
{ \
GREAL _pp = VEC_DOT(a, a); \
GIM_INV_SQRT(_pp, l); \
}

Vector inv length.

Definition at line 238 of file gim_linear_math.h.

◆ VEC_INV_LENGTH_2

#define VEC_INV_LENGTH_2 (   a,
 
)
Value:
{ \
GREAL _pp = VEC_DOT_2(a, a); \
GIM_INV_SQRT(_pp, l); \
}
#define VEC_DOT_2(a, b)
Vector dot product.

Vector inv length.

Definition at line 231 of file gim_linear_math.h.

◆ VEC_INV_LENGTH_4

#define VEC_INV_LENGTH_4 (   a,
 
)
Value:
{ \
GREAL _pp = VEC_DOT_4(a, a); \
GIM_INV_SQRT(_pp, l); \
}
#define VEC_DOT_4(a, b)
Vector dot product.

Vector inv length.

Definition at line 245 of file gim_linear_math.h.

◆ VEC_LENGTH

#define VEC_LENGTH (   a,
 
)
Value:
{ \
GREAL _pp = VEC_DOT(a, a); \
GIM_SQRT(_pp, l); \
}

Vector length.

Definition at line 217 of file gim_linear_math.h.

◆ VEC_LENGTH_2

#define VEC_LENGTH_2 (   a,
 
)
Value:
{ \
GREAL _pp = VEC_DOT_2(a, a); \
GIM_SQRT(_pp, l); \
}

Vector length.

Definition at line 210 of file gim_linear_math.h.

◆ VEC_LENGTH_4

#define VEC_LENGTH_4 (   a,
 
)
Value:
{ \
GREAL _pp = VEC_DOT_4(a, a); \
GIM_SQRT(_pp, l); \
}

Vector length.

Definition at line 224 of file gim_linear_math.h.

◆ VEC_MAYOR_COORD

#define VEC_MAYOR_COORD (   vec,
  maxc 
)
Value:
{ \
GREAL A[] = {fabs(vec[0]), fabs(vec[1]), fabs(vec[2])}; \
maxc = A[0] > A[1] ? (A[0] > A[2] ? 0 : 2) : (A[1] > A[2] ? 1 : 2); \
}

Finds the bigger cartesian coordinate from a vector.

Definition at line 370 of file gim_linear_math.h.

◆ VEC_MINOR_AXES

#define VEC_MINOR_AXES (   vec,
  i0,
  i1 
)
Value:
{ \
VEC_MAYOR_COORD(vec, i0); \
i0 = (i0 + 1) % 3; \
i1 = (i0 + 1) % 3; \
}

Finds the 2 smallest cartesian coordinates from a vector.

Definition at line 377 of file gim_linear_math.h.

◆ VEC_NEAR_EQUAL

#define VEC_NEAR_EQUAL (   v1,
  v2 
)    (GIM_NEAR_EQUAL(v1[0], v2[0]) && GIM_NEAR_EQUAL(v1[1], v2[1]) && GIM_NEAR_EQUAL(v1[2], v2[2]))

Definition at line 386 of file gim_linear_math.h.

◆ VEC_NORMALIZE

#define VEC_NORMALIZE (   a)
Value:
{ \
GREAL len; \
VEC_INV_LENGTH(a, len); \
if (len < G_REAL_INFINITY) \
{ \
a[0] *= len; \
a[1] *= len; \
a[2] *= len; \
} \
}
#define G_REAL_INFINITY
Definition: gim_math.h:54

Vector length.

Definition at line 267 of file gim_linear_math.h.

◆ VEC_PARALLEL

#define VEC_PARALLEL (   vp,
  v,
 
)
Value:
{ \
GREAL dot = VEC_DOT(v, n); \
vp[0] = (dot) * (n)[0]; \
vp[1] = (dot) * (n)[1]; \
vp[2] = (dot) * (n)[2]; \
}
btScalar dot(const btQuaternion &q1, const btQuaternion &q2)
Calculate the dot product between two quaternions.
Definition: btQuaternion.h:888

Vector parallel – assumes that n is of unit length

Definition at line 312 of file gim_linear_math.h.

◆ VEC_PERPENDICULAR

#define VEC_PERPENDICULAR (   vp,
  v,
 
)
Value:
{ \
GREAL dot = VEC_DOT(v, n); \
vp[0] = (v)[0] - dot * (n)[0]; \
vp[1] = (v)[1] - dot * (n)[1]; \
vp[2] = (v)[2] - dot * (n)[2]; \
}

Vector perp – assumes that n is of unit length accepts vector v, subtracts out any component parallel to n

Definition at line 303 of file gim_linear_math.h.

◆ VEC_PROJECT

#define VEC_PROJECT (   vp,
  v,
 
)
Value:
{ \
GREAL scalar = VEC_DOT(v, n); \
scalar /= VEC_DOT(n, n); \
vp[0] = (scalar) * (n)[0]; \
vp[1] = (scalar) * (n)[1]; \
vp[2] = (scalar) * (n)[2]; \
}

Same as Vector parallel – n can have any length accepts vector v, subtracts out any component perpendicular to n

Definition at line 322 of file gim_linear_math.h.

◆ VEC_REFLECT

#define VEC_REFLECT (   vr,
  v,
 
)
Value:
{ \
GREAL dot = VEC_DOT(v, n); \
vr[0] = (v)[0] - 2.0 * (dot) * (n)[0]; \
vr[1] = (v)[1] - 2.0 * (dot) * (n)[1]; \
vr[2] = (v)[2] - 2.0 * (dot) * (n)[2]; \
}

Vector reflection – assumes n is of unit length Takes vector v, reflects it against reflector n, and returns vr

Definition at line 343 of file gim_linear_math.h.

◆ VEC_RENORMALIZE

#define VEC_RENORMALIZE (   a,
  newlen 
)
Value:
{ \
GREAL len; \
VEC_INV_LENGTH(a, len); \
if (len < G_REAL_INFINITY) \
{ \
len *= newlen; \
a[0] *= len; \
a[1] *= len; \
a[2] *= len; \
} \
}

Set Vector size.

Definition at line 280 of file gim_linear_math.h.

◆ VEC_SCALE

#define VEC_SCALE (   c,
  a,
 
)
Value:
{ \
(c)[0] = (a) * (b)[0]; \
(c)[1] = (a) * (b)[1]; \
(c)[2] = (a) * (b)[2]; \
}

scalar times vector

Definition at line 146 of file gim_linear_math.h.

◆ VEC_SCALE_2

#define VEC_SCALE_2 (   c,
  a,
 
)
Value:
{ \
(c)[0] = (a) * (b)[0]; \
(c)[1] = (a) * (b)[1]; \
}

scalar times vector

Definition at line 139 of file gim_linear_math.h.

◆ VEC_SCALE_4

#define VEC_SCALE_4 (   c,
  a,
 
)
Value:
{ \
(c)[0] = (a) * (b)[0]; \
(c)[1] = (a) * (b)[1]; \
(c)[2] = (a) * (b)[2]; \
(c)[3] = (a) * (b)[3]; \
}

scalar times vector

Definition at line 154 of file gim_linear_math.h.

◆ VEC_SET3

#define VEC_SET3 (   a,
  b,
  op,
 
)
Value:
a[0] = b[0] op c[0]; \
a[1] = b[1] op c[1]; \
a[2] = b[2] op c[2];

Definition at line 364 of file gim_linear_math.h.

◆ VEC_SUM

#define VEC_SUM (   v21,
  v2,
  v1 
)
Value:
{ \
(v21)[0] = (v2)[0] + (v1)[0]; \
(v21)[1] = (v2)[1] + (v1)[1]; \
(v21)[2] = (v2)[2] + (v1)[2]; \
}

Vector sum.

Definition at line 122 of file gim_linear_math.h.

◆ VEC_SUM_2

#define VEC_SUM_2 (   v21,
  v2,
  v1 
)
Value:
{ \
(v21)[0] = (v2)[0] + (v1)[0]; \
(v21)[1] = (v2)[1] + (v1)[1]; \
}

Vector sum.

Definition at line 115 of file gim_linear_math.h.

◆ VEC_SUM_4

#define VEC_SUM_4 (   v21,
  v2,
  v1 
)
Value:
{ \
(v21)[0] = (v2)[0] + (v1)[0]; \
(v21)[1] = (v2)[1] + (v1)[1]; \
(v21)[2] = (v2)[2] + (v1)[2]; \
(v21)[3] = (v2)[3] + (v1)[3]; \
}

Vector sum.

Definition at line 130 of file gim_linear_math.h.

◆ VEC_SWAP

#define VEC_SWAP (   b,
 
)
Value:
{ \
GIM_SWAP_NUMBERS((b)[0], (a)[0]); \
GIM_SWAP_NUMBERS((b)[1], (a)[1]); \
GIM_SWAP_NUMBERS((b)[2], (a)[2]); \
}

VECTOR SWAP.

Definition at line 83 of file gim_linear_math.h.

◆ VEC_UNPROJECT

#define VEC_UNPROJECT (   vp,
  v,
 
)
Value:
{ \
GREAL scalar = VEC_DOT(v, n); \
scalar = VEC_DOT(n, n) / scalar; \
vp[0] = (scalar) * (n)[0]; \
vp[1] = (scalar) * (n)[1]; \
vp[2] = (scalar) * (n)[2]; \
}

accepts vector v

Definition at line 332 of file gim_linear_math.h.

◆ VEC_ZERO

#define VEC_ZERO (   a)
Value:
{ \
(a)[0] = (a)[1] = (a)[2] = 0.0f; \
}

Zero out a 3D vector.

Definition at line 47 of file gim_linear_math.h.

◆ VEC_ZERO_2

#define VEC_ZERO_2 (   a)
Value:
{ \
(a)[0] = (a)[1] = 0.0f; \
}

Zero out a 2D vector.

Definition at line 41 of file gim_linear_math.h.

◆ VEC_ZERO_4

#define VEC_ZERO_4 (   a)
Value:
{ \
(a)[0] = (a)[1] = (a)[2] = (a)[3] = 0.0f; \
}

Zero out a 4D vector.

Definition at line 53 of file gim_linear_math.h.

◆ X_AXIS_CROSS_VEC

#define X_AXIS_CROSS_VEC (   dst,
  src 
)
Value:
{ \
dst[0] = 0.0f; \
dst[1] = -src[2]; \
dst[2] = src[1]; \
}

Vector cross.

Definition at line 389 of file gim_linear_math.h.

◆ Y_AXIS_CROSS_VEC

#define Y_AXIS_CROSS_VEC (   dst,
  src 
)
Value:
{ \
dst[0] = src[2]; \
dst[1] = 0.0f; \
dst[2] = -src[0]; \
}

Definition at line 396 of file gim_linear_math.h.

◆ Z_AXIS_CROSS_VEC

#define Z_AXIS_CROSS_VEC (   dst,
  src 
)
Value:
{ \
dst[0] = -src[1]; \
dst[1] = src[0]; \
dst[2] = 0.0f; \
}

Definition at line 403 of file gim_linear_math.h.

◆ ZERO_MATRIX_4X4

#define ZERO_MATRIX_4X4 (   m)
Value:
{ \
m[0][0] = 0.0; \
m[0][1] = 0.0; \
m[0][2] = 0.0; \
m[0][3] = 0.0; \
\
m[1][0] = 0.0; \
m[1][1] = 0.0; \
m[1][2] = 0.0; \
m[1][3] = 0.0; \
\
m[2][0] = 0.0; \
m[2][1] = 0.0; \
m[2][2] = 0.0; \
m[2][3] = 0.0; \
\
m[3][0] = 0.0; \
m[3][1] = 0.0; \
m[3][2] = 0.0; \
m[3][3] = 0.0; \
}

initialize matrix

Definition at line 451 of file gim_linear_math.h.