Bullet Collision Detection & Physics Library
btSolverBody.h
Go to the documentation of this file.
1/*
2Bullet Continuous Collision Detection and Physics Library
3Copyright (c) 2003-2006 Erwin Coumans https://bulletphysics.org
4
5This software is provided 'as-is', without any express or implied warranty.
6In no event will the authors be held liable for any damages arising from the use of this software.
7Permission is granted to anyone to use this software for any purpose,
8including commercial applications, and to alter it and redistribute it freely,
9subject to the following restrictions:
10
111. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
122. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
133. This notice may not be removed or altered from any source distribution.
14*/
15
16#ifndef BT_SOLVER_BODY_H
17#define BT_SOLVER_BODY_H
18
19class btRigidBody;
22
25
27#ifdef BT_USE_SSE
28#define USE_SIMD 1
29#endif //
30
31#ifdef USE_SIMD
32
33struct btSimdScalar
34{
36 {
37 }
38
40 : m_vec128(_mm_set1_ps(fl))
41 {
42 }
43
45 : m_vec128(v128)
46 {
47 }
48 union {
49 __m128 m_vec128;
50 float m_floats[4];
51 int m_ints[4];
52 btScalar m_unusedPadding;
53 };
54 SIMD_FORCE_INLINE __m128 get128()
55 {
56 return m_vec128;
57 }
58
59 SIMD_FORCE_INLINE const __m128 get128() const
60 {
61 return m_vec128;
62 }
63
64 SIMD_FORCE_INLINE void set128(__m128 v128)
65 {
66 m_vec128 = v128;
67 }
68
69 SIMD_FORCE_INLINE operator __m128()
70 {
71 return m_vec128;
72 }
73 SIMD_FORCE_INLINE operator const __m128() const
74 {
75 return m_vec128;
76 }
77
78 SIMD_FORCE_INLINE operator float() const
79 {
80 return m_floats[0];
81 }
82};
83
86operator*(const btSimdScalar& v1, const btSimdScalar& v2)
87{
88 return btSimdScalar(_mm_mul_ps(v1.get128(), v2.get128()));
89}
90
93operator+(const btSimdScalar& v1, const btSimdScalar& v2)
94{
95 return btSimdScalar(_mm_add_ps(v1.get128(), v2.get128()));
96}
97
98#else
99#define btSimdScalar btScalar
100#endif
101
105{
119
121 void setWorldTransform(const btTransform& worldTransform)
122 {
123 m_worldTransform = worldTransform;
124 }
125
127 {
128 return m_worldTransform;
129 }
130
132 {
133 if (m_originalBody)
134 velocity = m_linearVelocity + m_externalForceImpulse + (m_angularVelocity + m_externalTorqueImpulse).cross(rel_pos);
135 else
136 velocity.setValue(0, 0, 0);
137 }
138
140 {
141 if (m_originalBody)
142 velocity = m_linearVelocity + m_deltaLinearVelocity + (m_angularVelocity + m_deltaAngularVelocity).cross(rel_pos);
143 else
144 velocity.setValue(0, 0, 0);
145 }
146
148 {
149 if (m_originalBody)
150 angVel = m_angularVelocity + m_deltaAngularVelocity;
151 else
152 angVel.setValue(0, 0, 0);
153 }
154
155 //Optimization for the iterative solver: avoid calculating constant terms involving inertia, normal, relative position
156 SIMD_FORCE_INLINE void applyImpulse(const btVector3& linearComponent, const btVector3& angularComponent, const btScalar impulseMagnitude)
157 {
158 if (m_originalBody)
159 {
160 m_deltaLinearVelocity += linearComponent * impulseMagnitude * m_linearFactor;
161 m_deltaAngularVelocity += angularComponent * (impulseMagnitude * m_angularFactor);
162 }
163 }
164
165 SIMD_FORCE_INLINE void internalApplyPushImpulse(const btVector3& linearComponent, const btVector3& angularComponent, btScalar impulseMagnitude)
166 {
167 if (m_originalBody)
168 {
169 m_pushVelocity += linearComponent * impulseMagnitude * m_linearFactor;
170 m_turnVelocity += angularComponent * (impulseMagnitude * m_angularFactor);
171 }
172 }
173
175 {
176 return m_deltaLinearVelocity;
177 }
178
180 {
181 return m_deltaAngularVelocity;
182 }
183
185 {
186 return m_pushVelocity;
187 }
188
190 {
191 return m_turnVelocity;
192 }
193
196
198 {
199 return m_deltaLinearVelocity;
200 }
201
203 {
204 return m_deltaAngularVelocity;
205 }
206
208 {
209 return m_angularFactor;
210 }
211
213 {
214 return m_invMass;
215 }
216
217 void internalSetInvMass(const btVector3& invMass)
218 {
219 m_invMass = invMass;
220 }
221
223 {
224 return m_pushVelocity;
225 }
226
228 {
229 return m_turnVelocity;
230 }
231
233 {
234 velocity = m_linearVelocity + m_deltaLinearVelocity + (m_angularVelocity + m_deltaAngularVelocity).cross(rel_pos);
235 }
236
238 {
239 angVel = m_angularVelocity + m_deltaAngularVelocity;
240 }
241
242 //Optimization for the iterative solver: avoid calculating constant terms involving inertia, normal, relative position
243 SIMD_FORCE_INLINE void internalApplyImpulse(const btVector3& linearComponent, const btVector3& angularComponent, const btScalar impulseMagnitude)
244 {
245 if (m_originalBody)
246 {
247 m_deltaLinearVelocity += linearComponent * impulseMagnitude * m_linearFactor;
248 m_deltaAngularVelocity += angularComponent * (impulseMagnitude * m_angularFactor);
249 }
250 }
251
253 {
254 if (m_originalBody)
255 {
256 m_linearVelocity += m_deltaLinearVelocity;
257 m_angularVelocity += m_deltaAngularVelocity;
258
259 //m_originalBody->setCompanionId(-1);
260 }
261 }
262
263 void writebackVelocityAndTransform(btScalar timeStep, btScalar splitImpulseTurnErp)
264 {
265 (void)timeStep;
266 if (m_originalBody)
267 {
268 m_linearVelocity += m_deltaLinearVelocity;
269 m_angularVelocity += m_deltaAngularVelocity;
270
271 //correct the position/orientation based on push/turn recovery
272 btTransform newTransform;
273 if (m_pushVelocity[0] != 0.f || m_pushVelocity[1] != 0 || m_pushVelocity[2] != 0 || m_turnVelocity[0] != 0.f || m_turnVelocity[1] != 0 || m_turnVelocity[2] != 0)
274 {
275 // btQuaternion orn = m_worldTransform.getRotation();
276 btTransformUtil::integrateTransform(m_worldTransform, m_pushVelocity, m_turnVelocity * splitImpulseTurnErp, timeStep, newTransform);
277 m_worldTransform = newTransform;
278 }
279 //m_worldTransform.setRotation(orn);
280 //m_originalBody->setCompanionId(-1);
281 }
282 }
283};
284
285#endif //BT_SOLVER_BODY_H
btMatrix3x3 operator*(const btMatrix3x3 &m, const btScalar &k)
Definition: btMatrix3x3.h:930
btMatrix3x3 operator+(const btMatrix3x3 &m1, const btMatrix3x3 &m2)
Definition: btMatrix3x3.h:952
float btScalar
The btScalar type abstracts floating point numbers, to easily switch between double and single floati...
Definition: btScalar.h:314
#define ATTRIBUTE_ALIGNED16(a)
Definition: btScalar.h:99
#define SIMD_FORCE_INLINE
Definition: btScalar.h:98
#define btSimdScalar
Until we get other contributions, only use SIMD on Windows, when using Visual Studio 2008 or later,...
Definition: btSolverBody.h:99
The btRigidBody is the main class for rigid body objects.
Definition: btRigidBody.h:60
static void integrateTransform(const btTransform &curTrans, const btVector3 &linvel, const btVector3 &angvel, btScalar timeStep, btTransform &predictedTransform)
The btTransform class supports rigid transforms with only translation and rotation and no scaling/she...
Definition: btTransform.h:30
btVector3 can be used to represent 3D points and vectors.
Definition: btVector3.h:82
void setValue(const btScalar &_x, const btScalar &_y, const btScalar &_z)
Definition: btVector3.h:640
The btSolverBody is an internal datastructure for the constraint solver. Only necessary data is packe...
Definition: btSolverBody.h:105
void getAngularVelocity(btVector3 &angVel) const
Definition: btSolverBody.h:147
const btVector3 & getPushVelocity() const
Definition: btSolverBody.h:184
const btVector3 & getTurnVelocity() const
Definition: btSolverBody.h:189
const btVector3 & getDeltaLinearVelocity() const
Definition: btSolverBody.h:174
btVector3 m_linearFactor
Definition: btSolverBody.h:111
btVector3 m_invMass
Definition: btSolverBody.h:112
btVector3 m_pushVelocity
Definition: btSolverBody.h:113
btVector3 & internalGetDeltaAngularVelocity()
Definition: btSolverBody.h:202
void setWorldTransform(const btTransform &worldTransform)
Definition: btSolverBody.h:121
btVector3 m_angularVelocity
Definition: btSolverBody.h:116
btVector3 m_deltaLinearVelocity
Definition: btSolverBody.h:108
btRigidBody * m_originalBody
Definition: btSolverBody.h:120
void internalApplyPushImpulse(const btVector3 &linearComponent, const btVector3 &angularComponent, btScalar impulseMagnitude)
Definition: btSolverBody.h:165
btVector3 & internalGetTurnVelocity()
Definition: btSolverBody.h:227
BT_DECLARE_ALIGNED_ALLOCATOR()
btVector3 m_deltaAngularVelocity
Definition: btSolverBody.h:109
btVector3 m_linearVelocity
Definition: btSolverBody.h:115
void getVelocityInLocalPointNoDelta(const btVector3 &rel_pos, btVector3 &velocity) const
Definition: btSolverBody.h:131
const btVector3 & getDeltaAngularVelocity() const
Definition: btSolverBody.h:179
btTransform m_worldTransform
Definition: btSolverBody.h:107
btVector3 & internalGetPushVelocity()
Definition: btSolverBody.h:222
const btVector3 & internalGetAngularFactor() const
Definition: btSolverBody.h:207
void writebackVelocityAndTransform(btScalar timeStep, btScalar splitImpulseTurnErp)
Definition: btSolverBody.h:263
btVector3 & internalGetDeltaLinearVelocity()
some internal methods, don't use them
Definition: btSolverBody.h:197
void writebackVelocity()
Definition: btSolverBody.h:252
void internalSetInvMass(const btVector3 &invMass)
Definition: btSolverBody.h:217
btVector3 m_angularFactor
Definition: btSolverBody.h:110
void internalApplyImpulse(const btVector3 &linearComponent, const btVector3 &angularComponent, const btScalar impulseMagnitude)
Definition: btSolverBody.h:243
void internalGetAngularVelocity(btVector3 &angVel) const
Definition: btSolverBody.h:237
btVector3 m_externalTorqueImpulse
Definition: btSolverBody.h:118
void internalGetVelocityInLocalPointObsolete(const btVector3 &rel_pos, btVector3 &velocity) const
Definition: btSolverBody.h:232
const btTransform & getWorldTransform() const
Definition: btSolverBody.h:126
void applyImpulse(const btVector3 &linearComponent, const btVector3 &angularComponent, const btScalar impulseMagnitude)
Definition: btSolverBody.h:156
void getVelocityInLocalPointObsolete(const btVector3 &rel_pos, btVector3 &velocity) const
Definition: btSolverBody.h:139
const btVector3 & internalGetInvMass() const
Definition: btSolverBody.h:212
btVector3 m_turnVelocity
Definition: btSolverBody.h:114
btVector3 m_externalForceImpulse
Definition: btSolverBody.h:117