Bullet Collision Detection & Physics Library
btSequentialImpulseConstraintSolver.h
Go to the documentation of this file.
1/*
2Bullet Continuous Collision Detection and Physics Library
3Copyright (c) 2003-2006 Erwin Coumans https://bulletphysics.org
4
5This software is provided 'as-is', without any express or implied warranty.
6In no event will the authors be held liable for any damages arising from the use of this software.
7Permission is granted to anyone to use this software for any purpose,
8including commercial applications, and to alter it and redistribute it freely,
9subject to the following restrictions:
10
111. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
122. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
133. This notice may not be removed or altered from any source distribution.
14*/
15
16#ifndef BT_SEQUENTIAL_IMPULSE_CONSTRAINT_SOLVER_H
17#define BT_SEQUENTIAL_IMPULSE_CONSTRAINT_SOLVER_H
18
19class btIDebugDraw;
21class btDispatcher;
29
31
33{
35 {
39 m_islandId = -2;
40 }
47};
48
52{
53
54
55protected:
61
68 // When running solvers on multiple threads, a race condition exists for Kinematic objects that
69 // participate in more than one solver.
70 // The getOrInitSolverBody() function writes the companionId of each body (storing the index of the solver body
71 // for the current solver). For normal dynamic bodies it isn't an issue because they can only be in one island
72 // (and therefore one thread) at a time. But kinematic bodies can be in multiple islands at once.
73 // To avoid this race condition, this solver does not write the companionId, instead it stores the solver body
74 // index in this solver-local table, indexed by the uniqueId of the body.
76
80 int m_cachedSolverMode; // used to check if SOLVER_SIMD flag has been changed
81 void setupSolverFunctions(bool useSimd);
82
84
85 void setupFrictionConstraint(btSolverConstraint & solverConstraint, const btVector3& normalAxis, int solverBodyIdA, int solverBodyIdB,
86 btManifoldPoint& cp, const btVector3& rel_pos1, const btVector3& rel_pos2,
87 btCollisionObject* colObj0, btCollisionObject* colObj1, btScalar relaxation,
88 const btContactSolverInfo& infoGlobal,
89 btScalar desiredVelocity = 0., btScalar cfmSlip = 0.);
90
91 void setupTorsionalFrictionConstraint(btSolverConstraint & solverConstraint, const btVector3& normalAxis, int solverBodyIdA, int solverBodyIdB,
92 btManifoldPoint& cp, btScalar combinedTorsionalFriction, const btVector3& rel_pos1, const btVector3& rel_pos2,
93 btCollisionObject* colObj0, btCollisionObject* colObj1, btScalar relaxation,
94 btScalar desiredVelocity = 0., btScalar cfmSlip = 0.);
95
96 btSolverConstraint& addFrictionConstraint(const btVector3& normalAxis, int solverBodyIdA, int solverBodyIdB, int frictionIndex, btManifoldPoint& cp, const btVector3& rel_pos1, const btVector3& rel_pos2, btCollisionObject* colObj0, btCollisionObject* colObj1, btScalar relaxation, const btContactSolverInfo& infoGlobal, btScalar desiredVelocity = 0., btScalar cfmSlip = 0.);
97 btSolverConstraint& addTorsionalFrictionConstraint(const btVector3& normalAxis, int solverBodyIdA, int solverBodyIdB, int frictionIndex, btManifoldPoint& cp, btScalar torsionalFriction, const btVector3& rel_pos1, const btVector3& rel_pos2, btCollisionObject* colObj0, btCollisionObject* colObj1, btScalar relaxation, btScalar desiredVelocity = 0, btScalar cfmSlip = 0.f);
98
99 void setupContactConstraint(btSolverConstraint & solverConstraint, int solverBodyIdA, int solverBodyIdB, btManifoldPoint& cp,
100 const btContactSolverInfo& infoGlobal, btScalar& relaxation, const btVector3& rel_pos1, const btVector3& rel_pos2);
101
102 static void applyAnisotropicFriction(btCollisionObject * colObj, btVector3 & frictionDirection, int frictionMode);
103
104 void setFrictionConstraintImpulse(btSolverConstraint & solverConstraint, int solverBodyIdA, int solverBodyIdB,
105 btManifoldPoint& cp, const btContactSolverInfo& infoGlobal);
106
108 unsigned long m_btSeed2;
109
110 btScalar restitutionCurve(btScalar rel_vel, btScalar restitution, btScalar velocityThreshold);
111
112 virtual void convertContacts(btPersistentManifold * *manifoldPtr, int numManifolds, const btContactSolverInfo& infoGlobal);
113
114 void convertContact(btPersistentManifold * manifold, const btContactSolverInfo& infoGlobal);
115
116 virtual void convertJoints(btTypedConstraint * *constraints, int numConstraints, const btContactSolverInfo& infoGlobal);
117 void convertJoint(btSolverConstraint * currentConstraintRow, btTypedConstraint * constraint, const btTypedConstraint::btConstraintInfo1& info1, int solverBodyIdA, int solverBodyIdB, const btContactSolverInfo& infoGlobal);
118
119 virtual void convertBodies(btCollisionObject * *bodies, int numBodies, const btContactSolverInfo& infoGlobal);
120
122 {
123 return m_resolveSplitPenetrationImpulse(bodyA, bodyB, contactConstraint);
124 }
125
127 {
128 return m_resolveSplitPenetrationImpulse(bodyA, bodyB, contactConstraint);
129 }
130
131 //internal method
132 int getOrInitSolverBody(btCollisionObject & body, btScalar timeStep);
133 void initSolverBody(btSolverBody * solverBody, btCollisionObject * collisionObject, btScalar timeStep);
134
135 btScalar resolveSingleConstraintRowGeneric(btSolverBody & bodyA, btSolverBody & bodyB, const btSolverConstraint& contactConstraint);
136 btScalar resolveSingleConstraintRowGenericSIMD(btSolverBody & bodyA, btSolverBody & bodyB, const btSolverConstraint& contactConstraint);
137 btScalar resolveSingleConstraintRowLowerLimit(btSolverBody & bodyA, btSolverBody & bodyB, const btSolverConstraint& contactConstraint);
138 btScalar resolveSingleConstraintRowLowerLimitSIMD(btSolverBody & bodyA, btSolverBody & bodyB, const btSolverConstraint& contactConstraint);
140 {
141 return m_resolveSplitPenetrationImpulse(bodyA, bodyB, contactConstraint);
142 }
143
144protected:
145 void writeBackContacts(int iBegin, int iEnd, const btContactSolverInfo& infoGlobal);
146 void writeBackJoints(int iBegin, int iEnd, const btContactSolverInfo& infoGlobal);
147 void writeBackBodies(int iBegin, int iEnd, const btContactSolverInfo& infoGlobal);
148 virtual void solveGroupCacheFriendlySplitImpulseIterations(btCollisionObject * *bodies, int numBodies, btPersistentManifold** manifoldPtr, int numManifolds, btTypedConstraint** constraints, int numConstraints, const btContactSolverInfo& infoGlobal, btIDebugDraw* debugDrawer);
149 virtual btScalar solveGroupCacheFriendlyFinish(btCollisionObject * *bodies, int numBodies, const btContactSolverInfo& infoGlobal);
150 virtual btScalar solveSingleIteration(int iteration, btCollisionObject** bodies, int numBodies, btPersistentManifold** manifoldPtr, int numManifolds, btTypedConstraint** constraints, int numConstraints, const btContactSolverInfo& infoGlobal, btIDebugDraw* debugDrawer);
151
152 virtual btScalar solveGroupCacheFriendlySetup(btCollisionObject * *bodies, int numBodies, btPersistentManifold** manifoldPtr, int numManifolds, btTypedConstraint** constraints, int numConstraints, const btContactSolverInfo& infoGlobal, btIDebugDraw* debugDrawer);
153 virtual btScalar solveGroupCacheFriendlyIterations(btCollisionObject * *bodies, int numBodies, btPersistentManifold** manifoldPtr, int numManifolds, btTypedConstraint** constraints, int numConstraints, const btContactSolverInfo& infoGlobal, btIDebugDraw* debugDrawer);
154
155public:
157
160
161 virtual btScalar solveGroup(btCollisionObject * *bodies, int numBodies, btPersistentManifold** manifold, int numManifolds, btTypedConstraint** constraints, int numConstraints, const btContactSolverInfo& info, btIDebugDraw* debugDrawer, btDispatcher* dispatcher);
162
164 virtual void reset();
165
166 unsigned long btRand2();
167
168 int btRandInt2(int n);
169
170 void setRandSeed(unsigned long seed)
171 {
172 m_btSeed2 = seed;
173 }
174 unsigned long getRandSeed() const
175 {
176 return m_btSeed2;
177 }
178
180 {
182 }
183
185 {
186 return m_resolveSingleConstraintRowGeneric;
187 }
189 {
190 m_resolveSingleConstraintRowGeneric = rowSolver;
191 }
193 {
194 return m_resolveSingleConstraintRowLowerLimit;
195 }
197 {
198 m_resolveSingleConstraintRowLowerLimit = rowSolver;
199 }
200
201
202
204 btSingleConstraintRowSolver getScalarConstraintRowSolverGeneric();
207
209 btSingleConstraintRowSolver getScalarConstraintRowSolverLowerLimit();
213};
214
215#endif //BT_SEQUENTIAL_IMPULSE_CONSTRAINT_SOLVER_H
btConstraintSolverType
btConstraintSolver provides solver interface
@ BT_SEQUENTIAL_IMPULSE_SOLVER
float btScalar
The btScalar type abstracts floating point numbers, to easily switch between double and single floati...
Definition: btScalar.h:314
#define ATTRIBUTE_ALIGNED16(a)
Definition: btScalar.h:99
btScalar(* btSingleConstraintRowSolver)(btSolverBody &, btSolverBody &, const btSolverConstraint &)
static unsigned long seed
Definition: btSoftBody.h:39
btCollisionObject can be used to manage collision detection objects.
The btDispatcher interface class can be used in combination with broadphase to dispatch calculations ...
Definition: btDispatcher.h:77
The btIDebugDraw interface class allows hooking up a debug renderer to visually debug simulations.
Definition: btIDebugDraw.h:27
ManifoldContactPoint collects and maintains persistent contactpoints.
btPersistentManifold is a contact point cache, it stays persistent as long as objects are overlapping...
The btSequentialImpulseConstraintSolver is a fast SIMD implementation of the Projected Gauss Seidel (...
btSingleConstraintRowSolver getSSE2ConstraintRowSolverGeneric()
btSingleConstraintRowSolver getActiveConstraintRowSolverLowerLimit()
btSingleConstraintRowSolver getActiveConstraintRowSolverGeneric()
virtual btConstraintSolverType getSolverType() const
btScalar resolveSplitPenetrationSIMD(btSolverBody &bodyA, btSolverBody &bodyB, const btSolverConstraint &contactConstraint)
unsigned long m_btSeed2
m_btSeed2 is used for re-arranging the constraint rows. improves convergence/quality of friction
btSingleConstraintRowSolver getSSE2ConstraintRowSolverLowerLimit()
btAlignedObjectArray< btSolverBody > m_tmpSolverBodyPool
btSingleConstraintRowSolver m_resolveSingleConstraintRowLowerLimit
btAlignedObjectArray< btTypedConstraint::btConstraintInfo1 > m_tmpConstraintSizesPool
btSingleConstraintRowSolver getSSE4_1ConstraintRowSolverGeneric()
void setConstraintRowSolverGeneric(btSingleConstraintRowSolver rowSolver)
btAlignedObjectArray< int > m_kinematicBodyUniqueIdToSolverBodyTable
btSingleConstraintRowSolver m_resolveSingleConstraintRowGeneric
btScalar resolveSplitPenetrationImpulseCacheFriendly(btSolverBody &bodyA, btSolverBody &bodyB, const btSolverConstraint &contactConstraint)
void setConstraintRowSolverLowerLimit(btSingleConstraintRowSolver rowSolver)
btSingleConstraintRowSolver getSSE4_1ConstraintRowSolverLowerLimit()
btScalar resolveSplitPenetrationImpulse(btSolverBody &bodyA, btSolverBody &bodyB, const btSolverConstraint &contactConstraint)
TypedConstraint is the baseclass for Bullet constraints and vehicles.
btVector3 can be used to represent 3D points and vectors.
Definition: btVector3.h:82
The btSolverBody is an internal datastructure for the constraint solver. Only necessary data is packe...
Definition: btSolverBody.h:105
1D constraint along a normal axis between bodyA and bodyB. It can be combined to solve contact and fr...