Bullet Collision Detection & Physics Library
btPreconditioner.h
Go to the documentation of this file.
1/*
2 Written by Xuchen Han <xuchenhan2015@u.northwestern.edu>
3
4 Bullet Continuous Collision Detection and Physics Library
5 Copyright (c) 2019 Google Inc. http://bulletphysics.org
6 This software is provided 'as-is', without any express or implied warranty.
7 In no event will the authors be held liable for any damages arising from the use of this software.
8 Permission is granted to anyone to use this software for any purpose,
9 including commercial applications, and to alter it and redistribute it freely,
10 subject to the following restrictions:
11 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
12 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
13 3. This notice may not be removed or altered from any source distribution.
14 */
15
16#ifndef BT_PRECONDITIONER_H
17#define BT_PRECONDITIONER_H
18
20{
21public:
23 virtual void operator()(const TVStack& x, TVStack& b) = 0;
24 virtual void reinitialize(bool nodeUpdated) = 0;
25 virtual ~Preconditioner() {}
26};
27
29{
30public:
31 virtual void operator()(const TVStack& x, TVStack& b)
32 {
33 btAssert(b.size() == x.size());
34 for (int i = 0; i < b.size(); ++i)
35 b[i] = x[i];
36 }
37 virtual void reinitialize(bool nodeUpdated)
38 {
39 }
40
42};
43
45{
48
49public:
51 : m_softBodies(softBodies)
52 {
53 }
54
55 virtual void reinitialize(bool nodeUpdated)
56 {
57 if (nodeUpdated)
58 {
60 for (int i = 0; i < m_softBodies.size(); ++i)
61 {
62 btSoftBody* psb = m_softBodies[i];
63 for (int j = 0; j < psb->m_nodes.size(); ++j)
64 m_inv_mass.push_back(psb->m_nodes[j].m_im);
65 }
66 }
67 }
68
69 virtual void operator()(const TVStack& x, TVStack& b)
70 {
71 btAssert(b.size() == x.size());
72 btAssert(m_inv_mass.size() <= x.size());
73 for (int i = 0; i < m_inv_mass.size(); ++i)
74 {
75 b[i] = x[i] * m_inv_mass[i];
76 }
77 for (int i = m_inv_mass.size(); i < b.size(); ++i)
78 {
79 b[i] = x[i];
80 }
81 }
82};
83
85{
90 const btScalar& m_dt;
91 const bool& m_implicit;
92
93public:
95 : m_softBodies(softBodies), m_projections(projections), m_lf(lf), m_dt(dt), m_implicit(implicit)
96 {
97 }
98
99 virtual void reinitialize(bool nodeUpdated)
100 {
101 if (nodeUpdated)
102 {
103 int num_nodes = 0;
104 for (int i = 0; i < m_softBodies.size(); ++i)
105 {
106 btSoftBody* psb = m_softBodies[i];
107 num_nodes += psb->m_nodes.size();
108 }
109 m_inv_A.resize(num_nodes);
110 }
112 for (int i = 0; i < m_inv_A.size(); ++i)
113 {
114 // printf("A[%d] = %f, %f, %f \n", i, m_inv_A[i][0], m_inv_A[i][1], m_inv_A[i][2]);
115 for (int d = 0; d < 3; ++d)
116 {
117 m_inv_A[i][d] = (m_inv_A[i][d] == 0) ? 0.0 : 1.0 / m_inv_A[i][d];
118 }
119 }
121 // printf("S.size() = %d \n", m_inv_S.size());
123 for (int i = 0; i < m_inv_S.size(); ++i)
124 {
125 // printf("S[%d] = %f, %f, %f \n", i, m_inv_S[i][0], m_inv_S[i][1], m_inv_S[i][2]);
126 for (int d = 0; d < 3; ++d)
127 {
128 m_inv_S[i][d] = (m_inv_S[i][d] == 0) ? 0.0 : 1.0 / m_inv_S[i][d];
129 }
130 }
131 }
132
133 void buildDiagonalA(TVStack& diagA) const
134 {
135 size_t counter = 0;
136 for (int i = 0; i < m_softBodies.size(); ++i)
137 {
138 btSoftBody* psb = m_softBodies[i];
139 for (int j = 0; j < psb->m_nodes.size(); ++j)
140 {
141 const btSoftBody::Node& node = psb->m_nodes[j];
142 diagA[counter] = (node.m_im == 0) ? btVector3(0, 0, 0) : btVector3(1.0 / node.m_im, 1.0 / node.m_im, 1.0 / node.m_im);
143 ++counter;
144 }
145 }
146 if (m_implicit)
147 {
148 printf("implicit not implemented\n");
149 btAssert(false);
150 }
151 for (int i = 0; i < m_lf.size(); ++i)
152 {
153 // add damping matrix
154 m_lf[i]->buildDampingForceDifferentialDiagonal(-m_dt, diagA);
155 }
156 }
157
158 void buildDiagonalS(const TVStack& inv_A, TVStack& diagS)
159 {
160 for (int c = 0; c < m_projections.m_lagrangeMultipliers.size(); ++c)
161 {
162 // S[k,k] = e_k^T * C A_d^-1 C^T * e_k
164 btVector3& t = diagS[c];
165 t.setZero();
166 for (int j = 0; j < lm.m_num_constraints; ++j)
167 {
168 for (int i = 0; i < lm.m_num_nodes; ++i)
169 {
170 for (int d = 0; d < 3; ++d)
171 {
172 t[j] += inv_A[lm.m_indices[i]][d] * lm.m_dirs[j][d] * lm.m_dirs[j][d] * lm.m_weights[i] * lm.m_weights[i];
173 }
174 }
175 }
176 }
177 }
178//#define USE_FULL_PRECONDITIONER
179#ifndef USE_FULL_PRECONDITIONER
180 virtual void operator()(const TVStack& x, TVStack& b)
181 {
182 btAssert(b.size() == x.size());
183 for (int i = 0; i < m_inv_A.size(); ++i)
184 {
185 b[i] = x[i] * m_inv_A[i];
186 }
187 int offset = m_inv_A.size();
188 for (int i = 0; i < m_inv_S.size(); ++i)
189 {
190 b[i + offset] = x[i + offset] * m_inv_S[i];
191 }
192 }
193#else
194 virtual void operator()(const TVStack& x, TVStack& b)
195 {
196 btAssert(b.size() == x.size());
197 int offset = m_inv_A.size();
198
199 for (int i = 0; i < m_inv_A.size(); ++i)
200 {
201 b[i] = x[i] * m_inv_A[i];
202 }
203
204 for (int i = 0; i < m_inv_S.size(); ++i)
205 {
206 b[i + offset].setZero();
207 }
208
209 for (int c = 0; c < m_projections.m_lagrangeMultipliers.size(); ++c)
210 {
212 // C * x
213 for (int d = 0; d < lm.m_num_constraints; ++d)
214 {
215 for (int i = 0; i < lm.m_num_nodes; ++i)
216 {
217 b[offset + c][d] += lm.m_weights[i] * b[lm.m_indices[i]].dot(lm.m_dirs[d]);
218 }
219 }
220 }
221
222 for (int i = 0; i < m_inv_S.size(); ++i)
223 {
224 b[i + offset] = b[i + offset] * m_inv_S[i];
225 }
226
227 for (int i = 0; i < m_inv_A.size(); ++i)
228 {
229 b[i].setZero();
230 }
231
232 for (int c = 0; c < m_projections.m_lagrangeMultipliers.size(); ++c)
233 {
234 // C^T * lambda
236 for (int i = 0; i < lm.m_num_nodes; ++i)
237 {
238 for (int j = 0; j < lm.m_num_constraints; ++j)
239 {
240 b[lm.m_indices[i]] += b[offset + c][j] * lm.m_weights[i] * lm.m_dirs[j];
241 }
242 }
243 }
244
245 for (int i = 0; i < m_inv_A.size(); ++i)
246 {
247 b[i] = (x[i] - b[i]) * m_inv_A[i];
248 }
249
250 TVStack t;
251 t.resize(b.size());
252 for (int i = 0; i < m_inv_S.size(); ++i)
253 {
254 t[i + offset] = x[i + offset] * m_inv_S[i];
255 }
256 for (int i = 0; i < m_inv_A.size(); ++i)
257 {
258 t[i].setZero();
259 }
260 for (int c = 0; c < m_projections.m_lagrangeMultipliers.size(); ++c)
261 {
262 // C^T * lambda
264 for (int i = 0; i < lm.m_num_nodes; ++i)
265 {
266 for (int j = 0; j < lm.m_num_constraints; ++j)
267 {
268 t[lm.m_indices[i]] += t[offset + c][j] * lm.m_weights[i] * lm.m_dirs[j];
269 }
270 }
271 }
272 for (int i = 0; i < m_inv_A.size(); ++i)
273 {
274 b[i] += t[i] * m_inv_A[i];
275 }
276
277 for (int i = 0; i < m_inv_S.size(); ++i)
278 {
279 b[i + offset] -= x[i + offset] * m_inv_S[i];
280 }
281 }
282#endif
283};
284
285#endif /* BT_PRECONDITIONER_H */
float btScalar
The btScalar type abstracts floating point numbers, to easily switch between double and single floati...
Definition: btScalar.h:314
#define btAssert(x)
Definition: btScalar.h:153
virtual void operator()(const TVStack &x, TVStack &b)
virtual void reinitialize(bool nodeUpdated)
virtual ~DefaultPreconditioner()
const bool & m_implicit
KKTPreconditioner(const btAlignedObjectArray< btSoftBody * > &softBodies, const btDeformableContactProjection &projections, const btAlignedObjectArray< btDeformableLagrangianForce * > &lf, const btScalar &dt, const bool &implicit)
void buildDiagonalA(TVStack &diagA) const
const btAlignedObjectArray< btSoftBody * > & m_softBodies
const btDeformableContactProjection & m_projections
virtual void reinitialize(bool nodeUpdated)
void buildDiagonalS(const TVStack &inv_A, TVStack &diagS)
const btScalar & m_dt
const btAlignedObjectArray< btDeformableLagrangianForce * > & m_lf
virtual void operator()(const TVStack &x, TVStack &b)
const btAlignedObjectArray< btSoftBody * > & m_softBodies
virtual void reinitialize(bool nodeUpdated)
MassPreconditioner(const btAlignedObjectArray< btSoftBody * > &softBodies)
virtual void operator()(const TVStack &x, TVStack &b)
btAlignedObjectArray< btScalar > m_inv_mass
virtual void reinitialize(bool nodeUpdated)=0
btAlignedObjectArray< btVector3 > TVStack
virtual ~Preconditioner()
virtual void operator()(const TVStack &x, TVStack &b)=0
int size() const
return the number of elements in the array
void resize(int newsize, const T &fillData=T())
void clear()
clear the array, deallocated memory. Generally it is better to use array.resize(0),...
void push_back(const T &_Val)
btAlignedObjectArray< LagrangeMultiplier > m_lagrangeMultipliers
The btSoftBody is an class to simulate cloth and volumetric soft bodies.
Definition: btSoftBody.h:75
tNodeArray m_nodes
Definition: btSoftBody.h:814
btVector3 can be used to represent 3D points and vectors.
Definition: btVector3.h:82
void setZero()
Definition: btVector3.h:671