Bullet Collision Detection & Physics Library
btMultiSphereShape.cpp
Go to the documentation of this file.
1/*
2Bullet Continuous Collision Detection and Physics Library
3Copyright (c) 2003-2009 Erwin Coumans http://bulletphysics.org
4
5This software is provided 'as-is', without any express or implied warranty.
6In no event will the authors be held liable for any damages arising from the use of this software.
7Permission is granted to anyone to use this software for any purpose,
8including commercial applications, and to alter it and redistribute it freely,
9subject to the following restrictions:
10
111. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
122. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
133. This notice may not be removed or altered from any source distribution.
14*/
15
16#if defined(_WIN32) || defined(__i386__)
17#define BT_USE_SSE_IN_API
18#endif
19
20#include "btMultiSphereShape.h"
24
25btMultiSphereShape::btMultiSphereShape(const btVector3* positions, const btScalar* radi, int numSpheres)
27{
29 //btScalar startMargin = btScalar(BT_LARGE_FLOAT);
30
31 m_localPositionArray.resize(numSpheres);
32 m_radiArray.resize(numSpheres);
33 for (int i = 0; i < numSpheres; i++)
34 {
35 m_localPositionArray[i] = positions[i];
36 m_radiArray[i] = radi[i];
37 }
38
40}
41
42#ifndef MIN
43#define MIN(_a, _b) ((_a) < (_b) ? (_a) : (_b))
44#endif
46{
47 btVector3 supVec(0, 0, 0);
48
50
51 btVector3 vec = vec0;
52 btScalar lenSqr = vec.length2();
53 if (lenSqr < (SIMD_EPSILON * SIMD_EPSILON))
54 {
55 vec.setValue(1, 0, 0);
56 }
57 else
58 {
59 btScalar rlen = btScalar(1.) / btSqrt(lenSqr);
60 vec *= rlen;
61 }
62
63 btVector3 vtx;
64 btScalar newDot;
65
66 const btVector3* pos = &m_localPositionArray[0];
67 const btScalar* rad = &m_radiArray[0];
68 int numSpheres = m_localPositionArray.size();
69
70 for (int k = 0; k < numSpheres; k += 128)
71 {
72 btVector3 temp[128];
73 int inner_count = MIN(numSpheres - k, 128);
74 for (long i = 0; i < inner_count; i++)
75 {
76 temp[i] = (*pos) * m_localScaling + vec * m_localScaling * (*rad) - vec * getMargin();
77 pos++;
78 rad++;
79 }
80 long i = vec.maxDot(temp, inner_count, newDot);
81 if (newDot > maxDot)
82 {
83 maxDot = newDot;
84 supVec = temp[i];
85 }
86 }
87
88 return supVec;
89}
90
91void btMultiSphereShape::batchedUnitVectorGetSupportingVertexWithoutMargin(const btVector3* vectors, btVector3* supportVerticesOut, int numVectors) const
92{
93 for (int j = 0; j < numVectors; j++)
94 {
96
97 const btVector3& vec = vectors[j];
98
99 btVector3 vtx;
100 btScalar newDot;
101
102 const btVector3* pos = &m_localPositionArray[0];
103 const btScalar* rad = &m_radiArray[0];
104 int numSpheres = m_localPositionArray.size();
105
106 for (int k = 0; k < numSpheres; k += 128)
107 {
108 btVector3 temp[128];
109 int inner_count = MIN(numSpheres - k, 128);
110 for (long i = 0; i < inner_count; i++)
111 {
112 temp[i] = (*pos) * m_localScaling + vec * m_localScaling * (*rad) - vec * getMargin();
113 pos++;
114 rad++;
115 }
116 long i = vec.maxDot(temp, inner_count, newDot);
117 if (newDot > maxDot)
118 {
119 maxDot = newDot;
120 supportVerticesOut[j] = temp[i];
121 }
122 }
123 }
124}
125
127{
128 //as an approximation, take the inertia of the box that bounds the spheres
129
130 btVector3 localAabbMin, localAabbMax;
131 getCachedLocalAabb(localAabbMin, localAabbMax);
132 btVector3 halfExtents = (localAabbMax - localAabbMin) * btScalar(0.5);
133
134 btScalar lx = btScalar(2.) * (halfExtents.x());
135 btScalar ly = btScalar(2.) * (halfExtents.y());
136 btScalar lz = btScalar(2.) * (halfExtents.z());
137
138 inertia.setValue(mass / (btScalar(12.0)) * (ly * ly + lz * lz),
139 mass / (btScalar(12.0)) * (lx * lx + lz * lz),
140 mass / (btScalar(12.0)) * (lx * lx + ly * ly));
141}
142
144const char* btMultiSphereShape::serialize(void* dataBuffer, btSerializer* serializer) const
145{
146 btMultiSphereShapeData* shapeData = (btMultiSphereShapeData*)dataBuffer;
148
149 int numElem = m_localPositionArray.size();
150 shapeData->m_localPositionArrayPtr = numElem ? (btPositionAndRadius*)serializer->getUniquePointer((void*)&m_localPositionArray[0]) : 0;
151
152 shapeData->m_localPositionArraySize = numElem;
153 if (numElem)
154 {
155 btChunk* chunk = serializer->allocate(sizeof(btPositionAndRadius), numElem);
157 for (int i = 0; i < numElem; i++, memPtr++)
158 {
159 m_localPositionArray[i].serializeFloat(memPtr->m_pos);
160 memPtr->m_radius = float(m_radiArray[i]);
161 }
162 serializer->finalizeChunk(chunk, "btPositionAndRadius", BT_ARRAY_CODE, (void*)&m_localPositionArray[0]);
163 }
164
165 // Fill padding with zeros to appease msan.
166 memset(shapeData->m_padding, 0, sizeof(shapeData->m_padding));
167
168 return "btMultiSphereShapeData";
169}
@ MULTI_SPHERE_SHAPE_PROXYTYPE
#define MIN(_a, _b)
float btScalar
The btScalar type abstracts floating point numbers, to easily switch between double and single floati...
Definition: btScalar.h:314
#define BT_LARGE_FLOAT
Definition: btScalar.h:316
btScalar btSqrt(btScalar y)
Definition: btScalar.h:466
#define SIMD_EPSILON
Definition: btScalar.h:543
#define BT_ARRAY_CODE
Definition: btSerializer.h:118
int size() const
return the number of elements in the array
void resize(int newsize, const T &fillData=T())
void * m_oldPtr
Definition: btSerializer.h:52
btConvexInternalAabbCachingShape adds local aabb caching for convex shapes, to avoid expensive boundi...
void getCachedLocalAabb(btVector3 &aabbMin, btVector3 &aabbMax) const
virtual const char * serialize(void *dataBuffer, btSerializer *serializer) const
fills the dataBuffer and returns the struct name (and 0 on failure)
virtual btScalar getMargin() const
btAlignedObjectArray< btVector3 > m_localPositionArray
virtual btVector3 localGetSupportingVertexWithoutMargin(const btVector3 &vec) const
btConvexShape Interface
btAlignedObjectArray< btScalar > m_radiArray
btMultiSphereShape(const btVector3 *positions, const btScalar *radi, int numSpheres)
virtual const char * serialize(void *dataBuffer, btSerializer *serializer) const
fills the dataBuffer and returns the struct name (and 0 on failure)
virtual void batchedUnitVectorGetSupportingVertexWithoutMargin(const btVector3 *vectors, btVector3 *supportVerticesOut, int numVectors) const
virtual void calculateLocalInertia(btScalar mass, btVector3 &inertia) const
CollisionShape Interface.
virtual btChunk * allocate(size_t size, int numElements)=0
virtual void * getUniquePointer(void *oldPtr)=0
virtual void finalizeChunk(btChunk *chunk, const char *structType, int chunkCode, void *oldPtr)=0
btVector3 can be used to represent 3D points and vectors.
Definition: btVector3.h:82
const btScalar & z() const
Return the z value.
Definition: btVector3.h:579
void setValue(const btScalar &_x, const btScalar &_y, const btScalar &_z)
Definition: btVector3.h:640
long maxDot(const btVector3 *array, long array_count, btScalar &dotOut) const
returns index of maximum dot product between this and vectors in array[]
Definition: btVector3.h:998
btScalar length2() const
Return the length of the vector squared.
Definition: btVector3.h:251
const btScalar & x() const
Return the x value.
Definition: btVector3.h:575
const btScalar & y() const
Return the y value.
Definition: btVector3.h:577
btConvexInternalShapeData m_convexInternalShapeData
btPositionAndRadius * m_localPositionArrayPtr
btVector3FloatData m_pos