Bullet Collision Detection & Physics Library
btMultiBodyLink.h
Go to the documentation of this file.
1/*
2Bullet Continuous Collision Detection and Physics Library
3Copyright (c) 2013 Erwin Coumans http://bulletphysics.org
4
5This software is provided 'as-is', without any express or implied warranty.
6In no event will the authors be held liable for any damages arising from the use of this software.
7Permission is granted to anyone to use this software for any purpose,
8including commercial applications, and to alter it and redistribute it freely,
9subject to the following restrictions:
10
111. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
122. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
133. This notice may not be removed or altered from any source distribution.
14*/
15
16#ifndef BT_MULTIBODY_LINK_H
17#define BT_MULTIBODY_LINK_H
18
22
24{
27};
28
29//both defines are now permanently enabled
30#define BT_MULTIBODYLINK_INCLUDE_PLANAR_JOINTS
31#define TEST_SPATIAL_ALGEBRA_LAYER
32
33//
34// Various spatial helper functions
35//
36
37//namespace {
38
40
41//}
42
43//
44// Link struct
45//
46
48{
50
51 btScalar m_mass; // mass of link
52 btVector3 m_inertiaLocal; // inertia of link (local frame; diagonal)
53
54 int m_parent; // index of the parent link (assumed to be < index of this link), or -1 if parent is the base link.
55
56 btQuaternion m_zeroRotParentToThis; // rotates vectors in parent-frame to vectors in local-frame (when q=0). constant.
57
58 btVector3 m_dVector; // vector from the inboard joint pos to this link's COM. (local frame.) constant.
59 //this is set to zero for planar joint (see also m_eVector comment)
60
61 // m_eVector is constant, but depends on the joint type:
62 // revolute, fixed, prismatic, spherical: vector from parent's COM to the pivot point, in PARENT's frame.
63 // planar: vector from COM of parent to COM of this link, WHEN Q = 0. (local frame.)
64 // todo: fix the planar so it is consistent with the other joints
65
67
69
71 {
76 eFixed = 4,
78 };
79
80 // "axis" = spatial joint axis (Mirtich Defn 9 p104). (expressed in local frame.) constant.
81 // for prismatic: m_axesTop[0] = zero;
82 // m_axesBottom[0] = unit vector along the joint axis.
83 // for revolute: m_axesTop[0] = unit vector along the rotation axis (u);
84 // m_axesBottom[0] = u cross m_dVector (i.e. COM linear motion due to the rotation at the joint)
85 //
86 // for spherical: m_axesTop[0][1][2] (u1,u2,u3) form a 3x3 identity matrix (3 rotation axes)
87 // m_axesBottom[0][1][2] cross u1,u2,u3 (i.e. COM linear motion due to the rotation at the joint)
88 //
89 // for planar: m_axesTop[0] = unit vector along the rotation axis (u); defines the plane of motion
90 // m_axesTop[1][2] = zero
91 // m_axesBottom[0] = zero
92 // m_axesBottom[1][2] = unit vectors along the translational axes on that plane
94 void setAxisTop(int dof, const btVector3 &axis) { m_axes[dof].m_topVec = axis; }
95 void setAxisBottom(int dof, const btVector3 &axis)
96 {
97 m_axes[dof].m_bottomVec = axis;
98 }
99 void setAxisTop(int dof, const btScalar &x, const btScalar &y, const btScalar &z)
100 {
101 m_axes[dof].m_topVec.setValue(x, y, z);
102 }
103 void setAxisBottom(int dof, const btScalar &x, const btScalar &y, const btScalar &z)
104 {
105 m_axes[dof].m_bottomVec.setValue(x, y, z);
106 }
107 const btVector3 &getAxisTop(int dof) const { return m_axes[dof].m_topVec; }
108 const btVector3 &getAxisBottom(int dof) const { return m_axes[dof].m_bottomVec; }
109
111
112 btQuaternion m_cachedRotParentToThis; // rotates vectors in parent frame to vectors in local frame
113 btVector3 m_cachedRVector; // vector from COM of parent to COM of this link, in local frame.
114
115 // predicted verstion
116 btQuaternion m_cachedRotParentToThis_interpolate; // rotates vectors in parent frame to vectors in local frame
117 btVector3 m_cachedRVector_interpolate; // vector from COM of parent to COM of this link, in local frame.
118
119 btVector3 m_appliedForce; // In WORLD frame
120 btVector3 m_appliedTorque; // In WORLD frame
121
124
127
128 //m_jointTorque is the joint torque applied by the user using 'addJointTorque'.
129 //It gets set to zero after each internal stepSimulation call
131
134
135 int m_dofCount, m_posVarCount; //redundant but handy
136
138
140
141 btTransform m_cachedWorldTransform; //this cache is updated when calling btMultiBody::forwardKinematics
142
143 const char *m_linkName; //m_linkName memory needs to be managed by the developer/user!
144 const char *m_jointName; //m_jointName memory needs to be managed by the developer/user!
145 const void *m_userPtr; //m_userPtr ptr needs to be managed by the developer/user!
146
147 btScalar m_jointDamping; //todo: implement this internally. It is unused for now, it is set by a URDF loader. User can apply manual damping.
148 btScalar m_jointFriction; //todo: implement this internally. It is unused for now, it is set by a URDF loader. User can apply manual friction using a velocity motor.
149 btScalar m_jointLowerLimit; //todo: implement this internally. It is unused for now, it is set by a URDF loader.
150 btScalar m_jointUpperLimit; //todo: implement this internally. It is unused for now, it is set by a URDF loader.
151 btScalar m_jointMaxForce; //todo: implement this internally. It is unused for now, it is set by a URDF loader.
152 btScalar m_jointMaxVelocity; //todo: implement this internally. It is unused for now, it is set by a URDF loader.
153
154 // ctor: set some sensible defaults
156 : m_mass(1),
157 m_parent(-1),
158 m_zeroRotParentToThis(0, 0, 0, 1),
159 m_cachedRotParentToThis(0, 0, 0, 1),
161 m_collider(0),
162 m_flags(0),
163 m_dofCount(0),
164 m_posVarCount(0),
167 m_linkName(0),
168 m_jointName(0),
169 m_userPtr(0),
176 {
177 m_inertiaLocal.setValue(1, 1, 1);
178 setAxisTop(0, 0., 0., 0.);
179 setAxisBottom(0, 1., 0., 0.);
180 m_dVector.setValue(0, 0, 0);
181 m_eVector.setValue(0, 0, 0);
182 m_cachedRVector.setValue(0, 0, 0);
184 m_appliedForce.setValue(0, 0, 0);
185 m_appliedTorque.setValue(0, 0, 0);
188 //
189 m_jointPos[0] = m_jointPos[1] = m_jointPos[2] = m_jointPos[4] = m_jointPos[5] = m_jointPos[6] = 0.f;
190 m_jointPos[3] = 1.f; //"quat.w"
193 }
194
195 // routine to update m_cachedRotParentToThis and m_cachedRVector
197 {
198 btScalar *pJointPos = (pq ? pq : &m_jointPos[0]);
200 btVector3& cachedVector = m_cachedRVector;
201 switch (m_jointType)
202 {
203 case eRevolute:
204 {
205 cachedRot = btQuaternion(getAxisTop(0), -pJointPos[0]) * m_zeroRotParentToThis;
207
208 break;
209 }
210 case ePrismatic:
211 {
212 // m_cachedRotParentToThis never changes, so no need to update
213 cachedVector = m_dVector + quatRotate(m_cachedRotParentToThis, m_eVector) + pJointPos[0] * getAxisBottom(0);
214
215 break;
216 }
217 case eSpherical:
218 {
219 cachedRot = btQuaternion(pJointPos[0], pJointPos[1], pJointPos[2], -pJointPos[3]) * m_zeroRotParentToThis;
220 cachedVector = m_dVector + quatRotate(cachedRot, m_eVector);
221
222 break;
223 }
224 case ePlanar:
225 {
226 cachedRot = btQuaternion(getAxisTop(0), -pJointPos[0]) * m_zeroRotParentToThis;
227 cachedVector = quatRotate(btQuaternion(getAxisTop(0), -pJointPos[0]), pJointPos[1] * getAxisBottom(1) + pJointPos[2] * getAxisBottom(2)) + quatRotate(cachedRot, m_eVector);
228
229 break;
230 }
231 case eFixed:
232 {
233 cachedRot = m_zeroRotParentToThis;
234 cachedVector = m_dVector + quatRotate(cachedRot, m_eVector);
235
236 break;
237 }
238 default:
239 {
240 //invalid type
241 btAssert(0);
242 }
243 }
246 }
247
249 {
250 btScalar *pJointPos = &m_jointPos_interpolate[0];
251
254 switch (m_jointType)
255 {
256 case eRevolute:
257 {
258 cachedRot = btQuaternion(getAxisTop(0), -pJointPos[0]) * m_zeroRotParentToThis;
260
261 break;
262 }
263 case ePrismatic:
264 {
265 // m_cachedRotParentToThis never changes, so no need to update
266 cachedVector = m_dVector + quatRotate(m_cachedRotParentToThis, m_eVector) + pJointPos[0] * getAxisBottom(0);
267
268 break;
269 }
270 case eSpherical:
271 {
272 cachedRot = btQuaternion(pJointPos[0], pJointPos[1], pJointPos[2], -pJointPos[3]) * m_zeroRotParentToThis;
273 cachedVector = m_dVector + quatRotate(cachedRot, m_eVector);
274
275 break;
276 }
277 case ePlanar:
278 {
279 cachedRot = btQuaternion(getAxisTop(0), -pJointPos[0]) * m_zeroRotParentToThis;
280 cachedVector = quatRotate(btQuaternion(getAxisTop(0), -pJointPos[0]), pJointPos[1] * getAxisBottom(1) + pJointPos[2] * getAxisBottom(2)) + quatRotate(cachedRot, m_eVector);
281
282 break;
283 }
284 case eFixed:
285 {
286 cachedRot = m_zeroRotParentToThis;
287 cachedVector = m_dVector + quatRotate(cachedRot, m_eVector);
288
289 break;
290 }
291 default:
292 {
293 //invalid type
294 btAssert(0);
295 }
296 }
297 }
298
299
300
301};
302
303#endif //BT_MULTIBODY_LINK_H
btVector3 quatRotate(const btQuaternion &rotation, const btVector3 &v)
Definition: btQuaternion.h:926
float btScalar
The btScalar type abstracts floating point numbers, to easily switch between double and single floati...
Definition: btScalar.h:314
#define btAssert(x)
Definition: btScalar.h:153
The btQuaternion implements quaternion to perform linear algebra rotations in combination with btMatr...
Definition: btQuaternion.h:50
The btTransform class supports rigid transforms with only translation and rotation and no scaling/she...
Definition: btTransform.h:30
void setIdentity()
Set this transformation to the identity.
Definition: btTransform.h:167
btVector3 can be used to represent 3D points and vectors.
Definition: btVector3.h:82
void setValue(const btScalar &_x, const btScalar &_y, const btScalar &_z)
Definition: btVector3.h:640