16#ifndef BT_MANIFOLD_RESULT_H
17#define BT_MANIFOLD_RESULT_H
62#ifdef DEBUG_PART_INDEX
CalculateCombinedCallback gCalculateCombinedContactStiffnessCallback
CalculateCombinedCallback gCalculateCombinedContactDampingCallback
ContactAddedCallback gContactAddedCallback
This is to allow MaterialCombiner/Custom Friction/Restitution values.
CalculateCombinedCallback gCalculateCombinedSpinningFrictionCallback
CalculateCombinedCallback gCalculateCombinedFrictionCallback
CalculateCombinedCallback gCalculateCombinedRollingFrictionCallback
bool(* ContactAddedCallback)(btManifoldPoint &cp, const btCollisionObjectWrapper *colObj0Wrap, int partId0, int index0, const btCollisionObjectWrapper *colObj1Wrap, int partId1, int index1)
btScalar(* CalculateCombinedCallback)(const btCollisionObject *body0, const btCollisionObject *body1)
These callbacks are used to customize the algorith that combine restitution, friction,...
CalculateCombinedCallback gCalculateCombinedRestitutionCallback
float btScalar
The btScalar type abstracts floating point numbers, to easily switch between double and single floati...
#define SIMD_FORCE_INLINE
btCollisionObject can be used to manage collision detection objects.
btTransform & getWorldTransform()
ManifoldContactPoint collects and maintains persistent contactpoints.
btManifoldResult is a helper class to manage contact results.
virtual void setShapeIdentifiersA(int partId0, int index0)
setShapeIdentifiersA/B provides experimental support for per-triangle material / custom material comb...
void setBody0Wrap(const btCollisionObjectWrapper *obj0Wrap)
const btCollisionObjectWrapper * m_body0Wrap
static btScalar calculateCombinedFriction(const btCollisionObject *body0, const btCollisionObject *body1)
User can override this material combiner by implementing gContactAddedCallback and setting body0->m_c...
static btScalar calculateCombinedContactDamping(const btCollisionObject *body0, const btCollisionObject *body1)
const btCollisionObjectWrapper * m_body1Wrap
const btPersistentManifold * getPersistentManifold() const
static btScalar calculateCombinedContactStiffness(const btCollisionObject *body0, const btCollisionObject *body1)
const btCollisionObjectWrapper * getBody1Wrap() const
const btCollisionObject * getBody1Internal() const
static btScalar calculateCombinedSpinningFriction(const btCollisionObject *body0, const btCollisionObject *body1)
void setBody1Wrap(const btCollisionObjectWrapper *obj1Wrap)
static btScalar calculateCombinedRollingFriction(const btCollisionObject *body0, const btCollisionObject *body1)
void setPersistentManifold(btPersistentManifold *manifoldPtr)
const btCollisionObject * getBody0Internal() const
virtual void setShapeIdentifiersB(int partId1, int index1)
virtual ~btManifoldResult()
static btScalar calculateCombinedRestitution(const btCollisionObject *body0, const btCollisionObject *body1)
in the future we can let the user override the methods to combine restitution and friction
btScalar m_closestPointDistanceThreshold
void refreshContactPoints()
const btCollisionObjectWrapper * getBody0Wrap() const
btPersistentManifold * getPersistentManifold()
btPersistentManifold * m_manifoldPtr
virtual void addContactPoint(const btVector3 &normalOnBInWorld, const btVector3 &pointInWorld, btScalar depth)
btPersistentManifold is a contact point cache, it stays persistent as long as objects are overlapping...
const btCollisionObject * getBody0() const
void refreshContactPoints(const btTransform &trA, const btTransform &trB)
calculated new worldspace coordinates and depth, and reject points that exceed the collision margin
int getNumContacts() const
btVector3 can be used to represent 3D points and vectors.
const btCollisionObject * getCollisionObject() const