42#ifndef btImplicitQRSVD_h
43#define btImplicitQRSVD_h
91 if ((x < 0 && y > 0) || (x > 0 && y < 0))
211 for (
int j = 0; j < 3; j++) {
214 A[
rowi][j] =
c * tau1 -
s * tau2;
215 A[
rowk][j] =
s * tau1 +
c * tau2;
220 for (
int j = 0; j < 2; j++) {
223 A(
rowi,j) =
c * tau1 -
s * tau2;
224 A(
rowk,j) =
s * tau1 +
c * tau2;
237 for (
int j = 0; j < 3; j++) {
240 A[j][
rowi] =
c * tau1 -
s * tau2;
241 A[j][
rowk] =
s * tau1 +
c * tau2;
246 for (
int j = 0; j < 2; j++) {
249 A(j,
rowi) =
c * tau1 -
s * tau2;
250 A(j,
rowk) =
s * tau1 +
c * tau2;
306 r2.
compute(H[0][0] * H[0][1] + H[1][0] * H[1][1], H[0][0] * H[0][2] + H[1][0] * H[1][2]);
435 btScalar a = (A(0, 0) + A(1, 1)), b = (A(1, 0) - A(0, 1));
445 R.
c = a / denominator;
446 R.
s = -b / denominator;
474 const btScalar tol = 64 * std::numeric_limits<btScalar>::epsilon())
515 btScalar csy = 2 * cosine * sine * y;
517 sigma(0,0) = c2 * x - csy + s2 * z;
518 sigma(1,1) = s2 * x + csy + c2 * z;
530 if (sigma(0,0) < sigma(1,1)) {
531 std::swap(sigma(0,0), sigma(1,1));
554 const btScalar tol = 64 * std::numeric_limits<btScalar>::epsilon())
594 int other = (t == 1) ? 0 : 2;
597 sigma[other] = B[other][other];
602 B_sub.
m_00 = B[0][0];
603 B_sub.
m_10 = B[1][0];
604 B_sub.
m_01 = B[0][1];
605 B_sub.
m_11 = B[1][1];
606 sigma_sub.
m_00 = sigma[0];
607 sigma_sub.
m_11 = sigma[1];
610 B[0][0] = B_sub.
m_00;
611 B[1][0] = B_sub.
m_10;
612 B[0][1] = B_sub.
m_01;
613 B[1][1] = B_sub.
m_11;
614 sigma[0] = sigma_sub.
m_00;
615 sigma[1] = sigma_sub.
m_11;
619 B_sub.
m_00 = B[1][1];
620 B_sub.
m_10 = B[2][1];
621 B_sub.
m_01 = B[1][2];
622 B_sub.
m_11 = B[2][2];
623 sigma_sub.
m_00 = sigma[1];
624 sigma_sub.
m_11 = sigma[2];
627 B[1][1] = B_sub.
m_00;
628 B[2][1] = B_sub.
m_10;
629 B[1][2] = B_sub.
m_01;
630 B[2][2] = B_sub.
m_11;
631 sigma[1] = sigma_sub.
m_00;
632 sigma[2] = sigma_sub.
m_11;
647 sigma[i] = -sigma[i];
662 for (
int d = 0; d < 3; ++d)
663 std::swap(A[d][i], A[d][j]);
688 std::swap(sigma[1], sigma[2]);
694 if (sigma[1] > sigma[0]) {
695 std::swap(sigma[0], sigma[1]);
709 if (
btFabs(sigma[0]) >= sigma[1]) {
718 std::swap(sigma[0], sigma[1]);
724 std::swap(sigma[1], sigma[2]);
754 btScalar tol = 128*std::numeric_limits<btScalar>::epsilon())
772 btScalar gamma_1 = alpha_1 * beta_1;
773 btScalar gamma_2 = alpha_2 * beta_2;
774 btScalar val = alpha_1 * alpha_1 + alpha_2 * alpha_2 + alpha_3 * alpha_3 + beta_1 * beta_1 + beta_2 * beta_2;
787 && count < max_count) {
788 mu =
wilkinsonShift(alpha_2 * alpha_2 + beta_1 * beta_1, gamma_2, alpha_3 * alpha_3 + beta_2 * beta_2);
790 r.
compute(alpha_1 * alpha_1 - mu, gamma_1);
801 gamma_1 = alpha_1 * beta_1;
802 gamma_2 = alpha_2 * beta_2;
815 if (
btFabs(beta_2) <= tol) {
816 process<0>(B,
U, sigma, V);
825 else if (
btFabs(beta_1) <= tol) {
826 process<1>(B,
U, sigma, V);
835 else if (
btFabs(alpha_2) <= tol) {
847 process<0>(B,
U, sigma, V);
848 sort(
U, sigma, V, 0);
856 else if (
btFabs(alpha_3) <= tol) {
878 process<0>(B,
U, sigma, V);
879 sort(
U, sigma, V, 0);
887 else if (
btFabs(alpha_1) <= tol) {
910 process<1>(B,
U, sigma, V);
911 sort(
U, sigma, V, 1);
void process(btMatrix3x3 &B, btMatrix3x3 &U, btVector3 &sigma, btMatrix3x3 &V)
Helper function of 3X3 SVD for processing 2X2 SVD.
void zeroChase(btMatrix3x3 &H, btMatrix3x3 &U, btMatrix3x3 &V)
zero chasing the 3X3 matrix to bidiagonal form original form of H: x x 0 x x x 0 0 x after zero chase...
static btScalar copySign(btScalar x, btScalar y)
btScalar wilkinsonShift(const btScalar a1, const btScalar b1, const btScalar a2)
compute wilkinsonShift of the block a1 b1 b1 a2 based on the wilkinsonShift formula mu = c + d - sign...
void singularValueDecomposition(const btMatrix2x2 &A, GivensRotation &U, const btMatrix2x2 &Sigma, GivensRotation &V, const btScalar tol=64 *std::numeric_limits< btScalar >::epsilon())
2x2 SVD (singular value decomposition) A=USV'
void swapCol(btMatrix3x3 &A, int i, int j)
void polarDecomposition(const btMatrix2x2 &A, GivensRotation &R, const btMatrix2x2 &S_Sym)
2x2 polar decomposition.
void makeLambdaShape(btMatrix3x3 &H, btMatrix3x3 &U, btMatrix3x3 &V)
make a 3X3 matrix to lambda shape original form of H: x x x x x x x x x after : x 0 0 x x 0 x 0 x
void sort(btMatrix3x3 &U, btVector3 &sigma, btMatrix3x3 &V, int t)
Helper function of 3X3 SVD for sorting singular values.
void flipSign(int i, btMatrix3x3 &U, btVector3 &sigma)
Helper function of 3X3 SVD for flipping signs due to flipping signs of sigma.
void makeUpperBidiag(btMatrix3x3 &H, btMatrix3x3 &U, btMatrix3x3 &V)
make a 3X3 matrix to upper bidiagonal form original form of H: x x x x x x x x x after zero chase: x ...
const T & btMax(const T &a, const T &b)
float btScalar
The btScalar type abstracts floating point numbers, to easily switch between double and single floati...
btScalar btSqrt(btScalar y)
btScalar btFabs(btScalar x)
Class for givens rotation.
void fill(const btMatrix2x2 &R) const
GivensRotation(int rowi_in, int rowk_in)
void operator*=(const GivensRotation &A)
Multiply givens must be for same row and column.
void fill(const btMatrix3x3 &R) const
Fill the R with the entries of this rotation.
GivensRotation operator*(const GivensRotation &A) const
Multiply givens must be for same row and column.
void rowRotation(btMatrix3x3 &A) const
This function does something like c -s 0 ( s c 0 ) A -> A 0 0 1 It only affects row i and row k of A.
void columnRotation(btMatrix2x2 &A) const
GivensRotation(btScalar a, btScalar b, int rowi_in, int rowk_in)
void computeUnconventional(const btScalar a, const btScalar b)
This function computes c and s so that ( c -s ) ( a ) = ( 0 ) s c b ( * )
void rowRotation(btMatrix2x2 &A) const
void compute(const btScalar a, const btScalar b)
Compute c and s from a and b so that ( c -s ) ( a ) = ( * ) s c b ( 0 )
void columnRotation(btMatrix3x3 &A) const
This function does something like c s 0 A ( -s c 0 ) -> A 0 0 1 It only affects column i and column k...
Bullet Continuous Collision Detection and Physics Library Copyright (c) 2019 Google Inc.
const btScalar & operator()(int i, int j) const
btMatrix2x2(const btMatrix2x2 &other)
btScalar & operator()(int i, int j)
The btMatrix3x3 class implements a 3x3 rotation matrix, to perform linear algebra in combination with...
void setIdentity()
Set the matrix to the identity.
btVector3 can be used to represent 3D points and vectors.