Bullet Collision Detection & Physics Library
btGeometryUtil.cpp
Go to the documentation of this file.
1/*
2Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans https://bulletphysics.org
3
4This software is provided 'as-is', without any express or implied warranty.
5In no event will the authors be held liable for any damages arising from the use of this software.
6Permission is granted to anyone to use this software for any purpose,
7including commercial applications, and to alter it and redistribute it freely,
8subject to the following restrictions:
9
101. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
112. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
123. This notice may not be removed or altered from any source distribution.
13*/
14
15#include "btGeometryUtil.h"
16
17/*
18 Make sure this dummy function never changes so that it
19 can be used by probes that are checking whether the
20 library is actually installed.
21*/
22extern "C"
23{
24 void btBulletMathProbe();
25
27}
28
30{
31 int numbrushes = planeEquations.size();
32 for (int i = 0; i < numbrushes; i++)
33 {
34 const btVector3& N1 = planeEquations[i];
35 btScalar dist = btScalar(N1.dot(point)) + btScalar(N1[3]) - margin;
36 if (dist > btScalar(0.))
37 {
38 return false;
39 }
40 }
41 return true;
42}
43
45{
46 int numvertices = vertices.size();
47 for (int i = 0; i < numvertices; i++)
48 {
49 const btVector3& N1 = vertices[i];
50 btScalar dist = btScalar(planeNormal.dot(N1)) + btScalar(planeNormal[3]) - margin;
51 if (dist > btScalar(0.))
52 {
53 return false;
54 }
55 }
56 return true;
57}
58
59bool notExist(const btVector3& planeEquation, const btAlignedObjectArray<btVector3>& planeEquations);
60
61bool notExist(const btVector3& planeEquation, const btAlignedObjectArray<btVector3>& planeEquations)
62{
63 int numbrushes = planeEquations.size();
64 for (int i = 0; i < numbrushes; i++)
65 {
66 const btVector3& N1 = planeEquations[i];
67 if (planeEquation.dot(N1) > btScalar(0.999))
68 {
69 return false;
70 }
71 }
72 return true;
73}
74
76{
77 const int numvertices = vertices.size();
78 // brute force:
79 for (int i = 0; i < numvertices; i++)
80 {
81 const btVector3& N1 = vertices[i];
82
83 for (int j = i + 1; j < numvertices; j++)
84 {
85 const btVector3& N2 = vertices[j];
86
87 for (int k = j + 1; k < numvertices; k++)
88 {
89 const btVector3& N3 = vertices[k];
90
91 btVector3 planeEquation, edge0, edge1;
92 edge0 = N2 - N1;
93 edge1 = N3 - N1;
94 btScalar normalSign = btScalar(1.);
95 for (int ww = 0; ww < 2; ww++)
96 {
97 planeEquation = normalSign * edge0.cross(edge1);
98 if (planeEquation.length2() > btScalar(0.0001))
99 {
100 planeEquation.normalize();
101 if (notExist(planeEquation, planeEquationsOut))
102 {
103 planeEquation[3] = -planeEquation.dot(N1);
104
105 //check if inside, and replace supportingVertexOut if needed
106 if (areVerticesBehindPlane(planeEquation, vertices, btScalar(0.01)))
107 {
108 planeEquationsOut.push_back(planeEquation);
109 }
110 }
111 }
112 normalSign = btScalar(-1.);
113 }
114 }
115 }
116 }
117}
118
120{
121 const int numbrushes = planeEquations.size();
122 // brute force:
123 for (int i = 0; i < numbrushes; i++)
124 {
125 const btVector3& N1 = planeEquations[i];
126
127 for (int j = i + 1; j < numbrushes; j++)
128 {
129 const btVector3& N2 = planeEquations[j];
130
131 for (int k = j + 1; k < numbrushes; k++)
132 {
133 const btVector3& N3 = planeEquations[k];
134
135 btVector3 n2n3;
136 n2n3 = N2.cross(N3);
137 btVector3 n3n1;
138 n3n1 = N3.cross(N1);
139 btVector3 n1n2;
140 n1n2 = N1.cross(N2);
141
142 if ((n2n3.length2() > btScalar(0.0001)) &&
143 (n3n1.length2() > btScalar(0.0001)) &&
144 (n1n2.length2() > btScalar(0.0001)))
145 {
146 //point P out of 3 plane equations:
147
148 // d1 ( N2 * N3 ) + d2 ( N3 * N1 ) + d3 ( N1 * N2 )
149 //P = -------------------------------------------------------------------------
150 // N1 . ( N2 * N3 )
151
152 btScalar quotient = (N1.dot(n2n3));
153 if (btFabs(quotient) > btScalar(0.000001))
154 {
155 quotient = btScalar(-1.) / quotient;
156 n2n3 *= N1[3];
157 n3n1 *= N2[3];
158 n1n2 *= N3[3];
159 btVector3 potentialVertex = n2n3;
160 potentialVertex += n3n1;
161 potentialVertex += n1n2;
162 potentialVertex *= quotient;
163
164 //check if inside, and replace supportingVertexOut if needed
165 if (isPointInsidePlanes(planeEquations, potentialVertex, btScalar(0.01)))
166 {
167 verticesOut.push_back(potentialVertex);
168 }
169 }
170 }
171 }
172 }
173 }
174}
bool notExist(const btVector3 &planeEquation, const btAlignedObjectArray< btVector3 > &planeEquations)
void btBulletMathProbe()
float btScalar
The btScalar type abstracts floating point numbers, to easily switch between double and single floati...
Definition: btScalar.h:314
btScalar btFabs(btScalar x)
Definition: btScalar.h:497
int size() const
return the number of elements in the array
void push_back(const T &_Val)
static void getVerticesFromPlaneEquations(const btAlignedObjectArray< btVector3 > &planeEquations, btAlignedObjectArray< btVector3 > &verticesOut)
static bool areVerticesBehindPlane(const btVector3 &planeNormal, const btAlignedObjectArray< btVector3 > &vertices, btScalar margin)
static void getPlaneEquationsFromVertices(btAlignedObjectArray< btVector3 > &vertices, btAlignedObjectArray< btVector3 > &planeEquationsOut)
static bool isPointInsidePlanes(const btAlignedObjectArray< btVector3 > &planeEquations, const btVector3 &point, btScalar margin)
btVector3 can be used to represent 3D points and vectors.
Definition: btVector3.h:82
btVector3 cross(const btVector3 &v) const
Return the cross product between this and another vector.
Definition: btVector3.h:380
btScalar dot(const btVector3 &v) const
Return the dot product.
Definition: btVector3.h:229
btScalar length2() const
Return the length of the vector squared.
Definition: btVector3.h:251
btVector3 & normalize()
Normalize this vector x^2 + y^2 + z^2 = 1.
Definition: btVector3.h:303