Bullet Collision Detection & Physics Library
btDeformableMultiBodyConstraintSolver.cpp
Go to the documentation of this file.
1/*
2 Written by Xuchen Han <xuchenhan2015@u.northwestern.edu>
3
4 Bullet Continuous Collision Detection and Physics Library
5 Copyright (c) 2019 Google Inc. http://bulletphysics.org
6 This software is provided 'as-is', without any express or implied warranty.
7 In no event will the authors be held liable for any damages arising from the use of this software.
8 Permission is granted to anyone to use this software for any purpose,
9 including commercial applications, and to alter it and redistribute it freely,
10 subject to the following restrictions:
11 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
12 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
13 3. This notice may not be removed or altered from any source distribution.
14 */
15
18#include <iostream>
19
20// override the iterations method to include deformable/multibody contact
21btScalar btDeformableMultiBodyConstraintSolver::solveDeformableGroupIterations(btCollisionObject** bodies, int numBodies, btCollisionObject** deformableBodies, int numDeformableBodies, btPersistentManifold** manifoldPtr, int numManifolds, btTypedConstraint** constraints, int numConstraints, const btContactSolverInfo& infoGlobal, btIDebugDraw* debugDrawer)
22{
23 {
24 // pair deformable body with solver body
25 pairDeformableAndSolverBody(bodies, numBodies, numDeformableBodies, infoGlobal);
26
28 solveGroupCacheFriendlySplitImpulseIterations(bodies, numBodies, deformableBodies, numDeformableBodies, manifoldPtr, numManifolds, constraints, numConstraints, infoGlobal, debugDrawer);
29
31 for (int iteration = 0; iteration < maxIterations; iteration++)
32 {
33 // rigid bodies are solved using solver body velocity, but rigid/deformable contact directly uses the velocity of the actual rigid body. So we have to do the following: Solve one iteration of the rigid/rigid contact, get the updated velocity in the solver body and update the velocity of the underlying rigid body. Then solve the rigid/deformable contact. Finally, grab the (once again) updated rigid velocity and update the velocity of the wrapping solver body
34
35 // solve rigid/rigid in solver body
36 m_leastSquaresResidual = solveSingleIteration(iteration, bodies, numBodies, manifoldPtr, numManifolds, constraints, numConstraints, infoGlobal, debugDrawer);
37 // solver body velocity -> rigid body velocity
38 solverBodyWriteBack(infoGlobal);
39 btScalar deformableResidual = m_deformableSolver->solveContactConstraints(deformableBodies, numDeformableBodies, infoGlobal);
40 // update rigid body velocity in rigid/deformable contact
42 // solver body velocity <- rigid body velocity
43 writeToSolverBody(bodies, numBodies, infoGlobal);
44
45
46 // std::cout << "------------Iteration " << iteration << "------------\n";
47 // std::cout << "m_leastSquaresResidual: " << m_leastSquaresResidual << "\n";
48
49 if (m_leastSquaresResidual <= infoGlobal.m_leastSquaresResidualThreshold || (iteration >= (maxIterations - 1)))
50 {
51#ifdef VERBOSE_RESIDUAL_PRINTF
52 if (iteration >= (maxIterations - 1))
53 printf("residual = %f at iteration #%d\n", m_leastSquaresResidual, iteration);
54#endif
58 if (numBodies > 0)
60 m_analyticsData.m_numBodies = numBodies;
63
65 // std::cout << "[===================Next Step===================]\n";
66 break;
67 }
68 }
69 }
70 return 0.f;
71}
72
73void btDeformableMultiBodyConstraintSolver::solveDeformableBodyGroup(btCollisionObject** bodies, int numBodies, btCollisionObject** deformableBodies, int numDeformableBodies, btPersistentManifold** manifold, int numManifolds, btTypedConstraint** constraints, int numConstraints, btMultiBodyConstraint** multiBodyConstraints, int numMultiBodyConstraints, const btContactSolverInfo& info, btIDebugDraw* debugDrawer, btDispatcher* dispatcher)
74{
75 m_tmpMultiBodyConstraints = multiBodyConstraints;
76 m_tmpNumMultiBodyConstraints = numMultiBodyConstraints;
77
78 // inherited from MultiBodyConstraintSolver
79 solveGroupCacheFriendlySetup(bodies, numBodies, manifold, numManifolds, constraints, numConstraints, info, debugDrawer);
80
81 // overriden
82 solveDeformableGroupIterations(bodies, numBodies, deformableBodies, numDeformableBodies, manifold, numManifolds, constraints, numConstraints, info, debugDrawer);
83
84 // inherited from MultiBodyConstraintSolver
85 solveGroupCacheFriendlyFinish(bodies, numBodies, info);
86
89}
90
92{
93 // reduced soft body solver directly modifies the solver body
95 {
96 return;
97 }
98
99 for (int i = 0; i < numBodies; i++)
100 {
101 int bodyId = getOrInitSolverBody(*bodies[i], infoGlobal.m_timeStep);
102
103 btRigidBody* body = btRigidBody::upcast(bodies[i]);
104 if (body && body->getInvMass())
105 {
106 btSolverBody& solverBody = m_tmpSolverBodyPool[bodyId];
107 solverBody.m_linearVelocity = body->getLinearVelocity() - solverBody.m_deltaLinearVelocity;
108 solverBody.m_angularVelocity = body->getAngularVelocity() - solverBody.m_deltaAngularVelocity;
109 }
110 }
111}
112
114{
115 // reduced soft body solver directly modifies the solver body
117 {
118 return;
119 }
120
121 for (int i = 0; i < m_tmpSolverBodyPool.size(); i++)
122 {
123 btRigidBody* body = m_tmpSolverBodyPool[i].m_originalBody;
124 if (body)
125 {
126 m_tmpSolverBodyPool[i].m_originalBody->setLinearVelocity(m_tmpSolverBodyPool[i].m_linearVelocity + m_tmpSolverBodyPool[i].m_deltaLinearVelocity);
127 m_tmpSolverBodyPool[i].m_originalBody->setAngularVelocity(m_tmpSolverBodyPool[i].m_angularVelocity + m_tmpSolverBodyPool[i].m_deltaAngularVelocity);
128 }
129 }
130}
131
132
133void btDeformableMultiBodyConstraintSolver::pairDeformableAndSolverBody(btCollisionObject** bodies, int numBodies, int numDeformableBodies, const btContactSolverInfo& infoGlobal)
134{
136 {
137 return;
138 }
139
141
142 for (int i = 0; i < numDeformableBodies; ++i)
143 {
144 for (int k = 0; k < solver->m_nodeRigidConstraints[i].size(); ++k)
145 {
147
148 if (!constraint.m_contact->m_cti.m_colObj->isStaticObject())
149 {
150 btCollisionObject& col_obj = const_cast<btCollisionObject&>(*constraint.m_contact->m_cti.m_colObj);
151
152 // object index in the solver body pool
153 int bodyId = getOrInitSolverBody(col_obj, infoGlobal.m_timeStep);
154
155 const btRigidBody* body = btRigidBody::upcast(bodies[bodyId]);
156 if (body && body->getInvMass())
157 {
158 // std::cout << "Node: " << constraint.m_node->index << ", body: " << bodyId << "\n";
159 btSolverBody& solverBody = m_tmpSolverBodyPool[bodyId];
160 constraint.setSolverBody(bodyId, solverBody);
161 }
162 }
163 }
164
165 // for (int j = 0; j < numBodies; j++)
166 // {
167 // int bodyId = getOrInitSolverBody(*bodies[j], infoGlobal.m_timeStep);
168
169 // btRigidBody* body = btRigidBody::upcast(bodies[j]);
170 // if (body && body->getInvMass())
171 // {
172 // btSolverBody& solverBody = m_tmpSolverBodyPool[bodyId];
173 // m_deformableSolver->pairConstraintWithSolverBody(i, bodyId, solverBody);
174 // }
175 // }
176 }
177}
178
179void btDeformableMultiBodyConstraintSolver::solveGroupCacheFriendlySplitImpulseIterations(btCollisionObject** bodies, int numBodies, btCollisionObject** deformableBodies, int numDeformableBodies, btPersistentManifold** manifoldPtr, int numManifolds, btTypedConstraint** constraints, int numConstraints, const btContactSolverInfo& infoGlobal, btIDebugDraw* debugDrawer)
180{
181 BT_PROFILE("solveGroupCacheFriendlySplitImpulseIterations");
182 int iteration;
183 if (infoGlobal.m_splitImpulse)
184 {
185 {
186 for (iteration = 0; iteration < infoGlobal.m_numIterations; iteration++)
187 {
188 btScalar leastSquaresResidual = 0.f;
189 {
190 int numPoolConstraints = m_tmpSolverContactConstraintPool.size();
191 int j;
192 for (j = 0; j < numPoolConstraints; j++)
193 {
195
197 leastSquaresResidual = btMax(leastSquaresResidual, residual * residual);
198 }
199 // solve the position correction between deformable and rigid/multibody
200 // btScalar residual = m_deformableSolver->solveSplitImpulse(infoGlobal);
201 btScalar residual = m_deformableSolver->m_objective->m_projection.solveSplitImpulse(deformableBodies, numDeformableBodies, infoGlobal);
202 leastSquaresResidual = btMax(leastSquaresResidual, residual * residual);
203 }
204 if (leastSquaresResidual <= infoGlobal.m_leastSquaresResidualThreshold || iteration >= (infoGlobal.m_numIterations - 1))
205 {
206#ifdef VERBOSE_RESIDUAL_PRINTF
207 if (iteration >= (infoGlobal.m_numIterations - 1))
208 printf("split impulse residual = %f at iteration #%d\n", leastSquaresResidual, iteration);
209#endif
210 break;
211 }
212 }
213 }
214 }
215}
const T & btMax(const T &a, const T &b)
Definition: btMinMax.h:27
#define BT_PROFILE(name)
Definition: btQuickprof.h:198
float btScalar
The btScalar type abstracts floating point numbers, to easily switch between double and single floati...
Definition: btScalar.h:314
int size() const
return the number of elements in the array
btCollisionObject can be used to manage collision detection objects.
bool isStaticObject() const
int getCompanionId() const
btDeformableBackwardEulerObjective * m_objective
virtual btScalar solveContactConstraints(btCollisionObject **deformableBodies, int numDeformableBodies, const btContactSolverInfo &infoGlobal)
virtual void deformableBodyInternalWriteBack()
btScalar solveSplitImpulse(btCollisionObject **deformableBodies, int numDeformableBodies, const btContactSolverInfo &infoGlobal)
void writeToSolverBody(btCollisionObject **bodies, int numBodies, const btContactSolverInfo &infoGlobal)
void pairDeformableAndSolverBody(btCollisionObject **bodies, int numBodies, int numDeformableBodies, const btContactSolverInfo &infoGlobal)
virtual void solveDeformableBodyGroup(btCollisionObject **bodies, int numBodies, btCollisionObject **deformableBodies, int numDeformableBodies, btPersistentManifold **manifold, int numManifolds, btTypedConstraint **constraints, int numConstraints, btMultiBodyConstraint **multiBodyConstraints, int numMultiBodyConstraints, const btContactSolverInfo &info, btIDebugDraw *debugDrawer, btDispatcher *dispatcher)
virtual void solveGroupCacheFriendlySplitImpulseIterations(btCollisionObject **bodies, int numBodies, btCollisionObject **deformableBodies, int numDeformableBodies, btPersistentManifold **manifoldPtr, int numManifolds, btTypedConstraint **constraints, int numConstraints, const btContactSolverInfo &infoGlobal, btIDebugDraw *debugDrawer)
virtual btScalar solveDeformableGroupIterations(btCollisionObject **bodies, int numBodies, btCollisionObject **deformableBodies, int numDeformableBodies, btPersistentManifold **manifoldPtr, int numManifolds, btTypedConstraint **constraints, int numConstraints, const btContactSolverInfo &infoGlobal, btIDebugDraw *debugDrawer)
void solverBodyWriteBack(const btContactSolverInfo &infoGlobal)
const btSoftBody::DeformableRigidContact * m_contact
The btDispatcher interface class can be used in combination with broadphase to dispatch calculations ...
Definition: btDispatcher.h:77
The btIDebugDraw interface class allows hooking up a debug renderer to visually debug simulations.
Definition: btIDebugDraw.h:27
btMultiBodyConstraint ** m_tmpMultiBodyConstraints
virtual btScalar solveGroupCacheFriendlyFinish(btCollisionObject **bodies, int numBodies, const btContactSolverInfo &infoGlobal)
virtual btScalar solveGroupCacheFriendlySetup(btCollisionObject **bodies, int numBodies, btPersistentManifold **manifoldPtr, int numManifolds, btTypedConstraint **constraints, int numConstraints, const btContactSolverInfo &infoGlobal, btIDebugDraw *debugDrawer)
virtual btScalar solveSingleIteration(int iteration, btCollisionObject **bodies, int numBodies, btPersistentManifold **manifoldPtr, int numManifolds, btTypedConstraint **constraints, int numConstraints, const btContactSolverInfo &infoGlobal, btIDebugDraw *debugDrawer)
btPersistentManifold is a contact point cache, it stays persistent as long as objects are overlapping...
btAlignedObjectArray< btAlignedObjectArray< btReducedDeformableNodeRigidContactConstraint > > m_nodeRigidConstraints
void setSolverBody(const int bodyId, btSolverBody &solver_body)
The btRigidBody is the main class for rigid body objects.
Definition: btRigidBody.h:60
btScalar getInvMass() const
Definition: btRigidBody.h:263
const btVector3 & getAngularVelocity() const
Definition: btRigidBody.h:437
static const btRigidBody * upcast(const btCollisionObject *colObj)
to keep collision detection and dynamics separate we don't store a rigidbody pointer but a rigidbody ...
Definition: btRigidBody.h:189
const btVector3 & getLinearVelocity() const
Definition: btRigidBody.h:433
btAlignedObjectArray< btSolverBody > m_tmpSolverBodyPool
int getOrInitSolverBody(btCollisionObject &body, btScalar timeStep)
btScalar resolveSplitPenetrationImpulse(btSolverBody &bodyA, btSolverBody &bodyB, const btSolverConstraint &contactConstraint)
TypedConstraint is the baseclass for Bullet constraints and vehicles.
const btCollisionObject * m_colObj
Definition: btSoftBody.h:226
The btSolverBody is an internal datastructure for the constraint solver. Only necessary data is packe...
Definition: btSolverBody.h:105
btVector3 m_angularVelocity
Definition: btSolverBody.h:116
btVector3 m_deltaLinearVelocity
Definition: btSolverBody.h:108
btVector3 m_deltaAngularVelocity
Definition: btSolverBody.h:109
btVector3 m_linearVelocity
Definition: btSolverBody.h:115
1D constraint along a normal axis between bodyA and bodyB. It can be combined to solve contact and fr...