Bullet Collision Detection & Physics Library
btDeformableBodySolver.h
Go to the documentation of this file.
1/*
2 Written by Xuchen Han <xuchenhan2015@u.northwestern.edu>
3
4 Bullet Continuous Collision Detection and Physics Library
5 Copyright (c) 2019 Google Inc. http://bulletphysics.org
6 This software is provided 'as-is', without any express or implied warranty.
7 In no event will the authors be held liable for any damages arising from the use of this software.
8 Permission is granted to anyone to use this software for any purpose,
9 including commercial applications, and to alter it and redistribute it freely,
10 subject to the following restrictions:
11 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
12 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
13 3. This notice may not be removed or altered from any source distribution.
14 */
15
16#ifndef BT_DEFORMABLE_BODY_SOLVERS_H
17#define BT_DEFORMABLE_BODY_SOLVERS_H
18
19#include "btSoftBodySolvers.h"
24#include "btConjugateResidual.h"
25#include "btConjugateGradient.h"
27// class btDeformableBackwardEulerObjective;
28// class btDeformableMultiBodyDynamicsWorld;
29
31{
33
34protected:
35 int m_numNodes; // total number of deformable body nodes
36 TVStack m_dv; // v_{n+1} - v_n
37 TVStack m_backup_dv; // backed up dv
38 TVStack m_ddv; // incremental dv
39 TVStack m_residual; // rhs of the linear solve
41 TVStack m_backupVelocity; // backed up v, equals v_n for implicit, equals v_{n+1}^* for explicit
45 bool m_implicit; // use implicit scheme if true, explicit scheme if false
46 int m_maxNewtonIterations; // max number of newton iterations
47 btScalar m_newtonTolerance; // stop newton iterations if f(x) < m_newtonTolerance
48 bool m_lineSearch; // If true, use newton's method with line search under implicit scheme
49 bool m_reducedSolver; // flag for reduced soft body solver
50public:
51 // handles data related to objective function
54
56
58
59 virtual SolverTypes getSolverType() const
60 {
61 return DEFORMABLE_SOLVER;
62 }
63
64 // update soft body normals
65 virtual void updateSoftBodies();
66
67 virtual btScalar solveContactConstraints(btCollisionObject** deformableBodies, int numDeformableBodies, const btContactSolverInfo& infoGlobal);
68
69 // solve the momentum equation
70 virtual void solveDeformableConstraints(btScalar solverdt);
71
72 // set gravity (get from deformable world)
73 virtual void setGravity(const btVector3& gravity)
74 {
75 // for full deformable object, we don't store gravity in the solver
76 // this function is overriden in the reduced deformable object
77 }
78
79 // resize/clear data structures
80 virtual void reinitialize(const btAlignedObjectArray<btSoftBody*>& softBodies, btScalar dt);
81
82 // set up contact constraints
83 virtual void setConstraints(const btContactSolverInfo& infoGlobal);
84
85 // add in elastic forces and gravity to obtain v_{n+1}^* and calls predictDeformableMotion
86 virtual void predictMotion(btScalar solverdt);
87
88 // move to temporary position x_{n+1}^* = x_n + dt * v_{n+1}^*
89 // x_{n+1}^* is stored in m_q
91
92 // save the current velocity to m_backupVelocity
93 void backupVelocity();
94
95 // set m_dv and m_backupVelocity to desired value to prepare for momentum solve
96 virtual void setupDeformableSolve(bool implicit);
97
98 // set the current velocity to that backed up in m_backupVelocity
99 void revertVelocity();
100
101 // set velocity to m_dv + m_backupVelocity
102 void updateVelocity();
103
104 // update the node count
105 bool updateNodes();
106
107 // calculate the change in dv resulting from the momentum solve
108 void computeStep(TVStack& ddv, const TVStack& residual);
109
110 // calculate the change in dv resulting from the momentum solve when line search is turned on
111 btScalar computeDescentStep(TVStack& ddv, const TVStack& residual, bool verbose = false);
112
113 virtual void copySoftBodyToVertexBuffer(const btSoftBody* const softBody, btVertexBufferDescriptor* vertexBuffer) {}
114
115 // process collision between deformable and rigid
116 virtual void processCollision(btSoftBody* softBody, const btCollisionObjectWrapper* collisionObjectWrap)
117 {
118 softBody->defaultCollisionHandler(collisionObjectWrap);
119 }
120
121 // process collision between deformable and deformable
122 virtual void processCollision(btSoftBody* softBody, btSoftBody* otherSoftBody)
123 {
124 softBody->defaultCollisionHandler(otherSoftBody);
125 }
126
127 // If true, implicit time stepping scheme is used.
128 // Otherwise, explicit time stepping scheme is used
129 void setImplicit(bool implicit);
130
131 // If true, newton's method with line search is used when implicit time stepping scheme is turned on
132 void setLineSearch(bool lineSearch);
133
134 // set temporary position x^* = x_n + dt * v
135 // update the deformation gradient at position x^*
136 void updateState();
137
138 // set dv = dv + scale * ddv
139 void updateDv(btScalar scale = 1);
140
141 // set temporary position x^* = x_n + dt * v^*
142 void updateTempPosition();
143
144 // save the current dv to m_backup_dv;
145 void backupDv();
146
147 // set dv to the backed-up value
148 void revertDv();
149
150 // set dv = dv + scale * ddv
151 // set v^* = v_n + dv
152 // set temporary position x^* = x_n + dt * v^*
153 // update the deformation gradient at position x^*
154 void updateEnergy(btScalar scale);
155
156 // calculates the appropriately scaled kinetic energy in the system, which is
157 // 1/2 * dv^T * M * dv
158 // used in line search
160
161 // add explicit force to the velocity in the objective class
162 virtual void applyExplicitForce();
163
164 // execute position/velocity update and apply anchor constraints in the integrateTransforms from the Dynamics world
165 virtual void applyTransforms(btScalar timeStep);
166
167 virtual void setStrainLimiting(bool opt)
168 {
170 }
171
172 virtual void setPreconditioner(int opt)
173 {
174 switch (opt)
175 {
178 break;
179
182 break;
183
184 default:
185 btAssert(false);
186 break;
187 }
188 }
189
191 {
192 return &(m_objective->m_lf);
193 }
194
196 {
197 return m_objective->getIndices();
198 }
199
200 virtual void setProjection()
201 {
203 }
204
206 {
208 }
209
210 virtual bool isReducedSolver()
211 {
212 return m_reducedSolver;
213 }
214
216
217 // unused functions
218 virtual void optimize(btAlignedObjectArray<btSoftBody*>& softBodies, bool forceUpdate = false) {}
219 virtual void solveConstraints(btScalar dt) {}
220 virtual bool checkInitialized() { return true; }
221 virtual void copyBackToSoftBodies(bool bMove = true) {}
222};
223
224#endif /* btDeformableBodySolver_h */
float btScalar
The btScalar type abstracts floating point numbers, to easily switch between double and single floati...
Definition: btScalar.h:314
#define btAssert(x)
Definition: btScalar.h:153
btCollisionObject can be used to manage collision detection objects.
btAlignedObjectArray< btDeformableLagrangianForce * > m_lf
const btAlignedObjectArray< btSoftBody::Node * > * getIndices() const
virtual void processCollision(btSoftBody *softBody, btSoftBody *otherSoftBody)
Process a collision between two soft bodies.
virtual void updateSoftBodies()
Perform necessary per-step updates of soft bodies such as recomputing normals and bounding boxes.
virtual void solveDeformableConstraints(btScalar solverdt)
void updateEnergy(btScalar scale)
virtual SolverTypes getSolverType() const
Return the type of the solver.
virtual bool checkInitialized()
Ensure that this solver is initialized.
virtual void setConstraints(const btContactSolverInfo &infoGlobal)
virtual void processCollision(btSoftBody *softBody, const btCollisionObjectWrapper *collisionObjectWrap)
btDeformableBackwardEulerObjective * m_objective
virtual void applyTransforms(btScalar timeStep)
virtual void setStrainLimiting(bool opt)
virtual void setPreconditioner(int opt)
btScalar computeDescentStep(TVStack &ddv, const TVStack &residual, bool verbose=false)
virtual void copyBackToSoftBodies(bool bMove=true)
Copy necessary data back to the original soft body source objects.
virtual void copySoftBodyToVertexBuffer(const btSoftBody *const softBody, btVertexBufferDescriptor *vertexBuffer)
void predictDeformableMotion(btSoftBody *psb, btScalar dt)
virtual void optimize(btAlignedObjectArray< btSoftBody * > &softBodies, bool forceUpdate=false)
Optimize soft bodies in this solver.
btConjugateResidual< btDeformableBackwardEulerObjective > m_cr
btConjugateGradient< btDeformableBackwardEulerObjective > m_cg
virtual btAlignedObjectArray< btDeformableLagrangianForce * > * getLagrangianForceArray()
virtual void reinitialize(const btAlignedObjectArray< btSoftBody * > &softBodies, btScalar dt)
virtual void setupDeformableSolve(bool implicit)
void setLineSearch(bool lineSearch)
virtual const btAlignedObjectArray< btSoftBody::Node * > * getIndices()
btAlignedObjectArray< btSoftBody * > m_softBodies
virtual btScalar solveContactConstraints(btCollisionObject **deformableBodies, int numDeformableBodies, const btContactSolverInfo &infoGlobal)
virtual void solveConstraints(btScalar dt)
Solve constraints for a set of soft bodies.
btAlignedObjectArray< btVector3 > TVStack
virtual void predictMotion(btScalar solverdt)
Predict motion of soft bodies into next timestep.
void computeStep(TVStack &ddv, const TVStack &residual)
virtual void setGravity(const btVector3 &gravity)
virtual void deformableBodyInternalWriteBack()
void updateDv(btScalar scale=1)
The btSoftBody is an class to simulate cloth and volumetric soft bodies.
Definition: btSoftBody.h:75
void defaultCollisionHandler(const btCollisionObjectWrapper *pcoWrap)
btVector3 can be used to represent 3D points and vectors.
Definition: btVector3.h:82