58 for (
int j = 0; j < numVectors; j++)
68 supportVerticesOut[j][3] = maxDot;
float btScalar
The btScalar type abstracts floating point numbers, to easily switch between double and single floati...
btScalar btSqrt(btScalar y)
virtual btScalar getMargin() const
virtual btVector3 localGetSupportingVertex(const btVector3 &vec) const
btVector3 getScaledPoint(int index) const
virtual void setLocalScaling(const btVector3 &scaling)
in case we receive negative scaling
virtual int getNumPlanes() const
virtual void getEdge(int i, btVector3 &pa, btVector3 &pb) const
virtual int getNumEdges() const
virtual int getNumVertices() const
btVector3 * m_unscaledPoints
virtual void batchedUnitVectorGetSupportingVertexWithoutMargin(const btVector3 *vectors, btVector3 *supportVerticesOut, int numVectors) const
virtual btVector3 localGetSupportingVertexWithoutMargin(const btVector3 &vec) const
virtual void getVertex(int i, btVector3 &vtx) const
virtual bool isInside(const btVector3 &pt, btScalar tolerance) const
virtual void getPlane(btVector3 &planeNormal, btVector3 &planeSupport, int i) const
btVector3 can be used to represent 3D points and vectors.
void setValue(const btScalar &_x, const btScalar &_y, const btScalar &_z)
long maxDot(const btVector3 *array, long array_count, btScalar &dotOut) const
returns index of maximum dot product between this and vectors in array[]
btScalar length2() const
Return the length of the vector squared.
btVector3 & normalize()
Normalize this vector x^2 + y^2 + z^2 = 1.