Bullet Collision Detection & Physics Library
btConjugateResidual.h
Go to the documentation of this file.
1/*
2 Written by Xuchen Han <xuchenhan2015@u.northwestern.edu>
3
4 Bullet Continuous Collision Detection and Physics Library
5 Copyright (c) 2019 Google Inc. http://bulletphysics.org
6 This software is provided 'as-is', without any express or implied warranty.
7 In no event will the authors be held liable for any damages arising from the use of this software.
8 Permission is granted to anyone to use this software for any purpose,
9 including commercial applications, and to alter it and redistribute it freely,
10 subject to the following restrictions:
11 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
12 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
13 3. This notice may not be removed or altered from any source distribution.
14 */
15
16#ifndef BT_CONJUGATE_RESIDUAL_H
17#define BT_CONJUGATE_RESIDUAL_H
18#include "btKrylovSolver.h"
19
20template <class MatrixX>
21class btConjugateResidual : public btKrylovSolver<MatrixX>
22{
26 // temp_r = A*r
27 // temp_p = A*p
28 // z = M^(-1) * temp_p = M^(-1) * A * p
30
31public:
32 btConjugateResidual(const int max_it_in)
33 : Base(max_it_in, 1e-8)
34 {
35 }
36
38
39 // return the number of iterations taken
40 int solve(MatrixX& A, TVStack& x, const TVStack& b, bool verbose = false)
41 {
42 BT_PROFILE("CRSolve");
43 btAssert(x.size() == b.size());
44 reinitialize(b);
45 // r = b - A * x --with assigned dof zeroed out
46 A.multiply(x, temp_r); // borrow temp_r here to store A*x
47 r = this->sub(b, temp_r);
48 // z = M^(-1) * r
49 A.precondition(r, z); // borrow z to store preconditioned r
50 r = z;
51 btScalar residual_norm = this->norm(r);
52 if (residual_norm <= Base::m_tolerance)
53 {
54 return 0;
55 }
56 p = r;
57 btScalar r_dot_Ar, r_dot_Ar_new;
58 // temp_p = A*p
59 A.multiply(p, temp_p);
60 // temp_r = A*r
61 temp_r = temp_p;
62 r_dot_Ar = this->dot(r, temp_r);
63 for (int k = 1; k <= Base::m_maxIterations; k++)
64 {
65 // z = M^(-1) * Ap
66 A.precondition(temp_p, z);
67 // alpha = r^T * A * r / (Ap)^T * M^-1 * Ap)
68 btScalar alpha = r_dot_Ar / this->dot(temp_p, z);
69 // x += alpha * p;
70 this->multAndAddTo(alpha, p, x);
71 // r -= alpha * z;
72 this->multAndAddTo(-alpha, z, r);
73 btScalar norm_r = this->norm(r);
74 if (norm_r < best_r)
75 {
76 best_x = x;
77 best_r = norm_r;
78 if (norm_r < Base::m_tolerance)
79 {
80 return k;
81 }
82 }
83 // temp_r = A * r;
84 A.multiply(r, temp_r);
85 r_dot_Ar_new = this->dot(r, temp_r);
86 btScalar beta = r_dot_Ar_new / r_dot_Ar;
87 r_dot_Ar = r_dot_Ar_new;
88 // p = beta*p + r;
89 p = this->multAndAdd(beta, p, r);
90 // temp_p = beta*temp_p + temp_r;
91 temp_p = this->multAndAdd(beta, temp_p, temp_r);
92 }
93 if (verbose)
94 {
95 std::cout << "ConjugateResidual max iterations reached, residual = " << best_r << std::endl;
96 }
97 x = best_x;
99 }
100
101 void reinitialize(const TVStack& b)
102 {
103 r.resize(b.size());
104 p.resize(b.size());
105 z.resize(b.size());
106 temp_p.resize(b.size());
107 temp_r.resize(b.size());
108 best_x.resize(b.size());
110 }
111};
112#endif /* btConjugateResidual_h */
#define BT_PROFILE(name)
Definition: btQuickprof.h:198
float btScalar
The btScalar type abstracts floating point numbers, to easily switch between double and single floati...
Definition: btScalar.h:314
#define SIMD_INFINITY
Definition: btScalar.h:544
#define btAssert(x)
Definition: btScalar.h:153
int size() const
return the number of elements in the array
void resize(int newsize, const T &fillData=T())
btConjugateResidual(const int max_it_in)
int solve(MatrixX &A, TVStack &x, const TVStack &b, bool verbose=false)
void reinitialize(const TVStack &b)
btKrylovSolver< MatrixX > Base
btAlignedObjectArray< btVector3 > TVStack
virtual btScalar norm(const TVStack &a)
virtual btScalar dot(const TVStack &a, const TVStack &b)
virtual TVStack sub(const TVStack &a, const TVStack &b)
btScalar m_tolerance
virtual void multAndAddTo(btScalar s, const TVStack &a, TVStack &result)
virtual TVStack multAndAdd(btScalar s, const TVStack &a, const TVStack &b)