Interface Scorer
- All Known Subinterfaces:
Aligner<S,
,C> MatrixAligner<S,
,C> PairInProfileScorer<S,
,C> PairwiseSequenceAligner<S,
,C> PairwiseSequenceScorer<S,
,C> PartitionRefiner<S,
,C> ProfileProfileAligner<S,
,C> ProfileProfileScorer<S,
,C> RescoreRefiner<S,
C>
- All Known Implementing Classes:
AbstractMatrixAligner
,AbstractPairwiseSequenceAligner
,AbstractProfileProfileAligner
,AbstractScorer
,AnchoredPairwiseSequenceAligner
,FractionalIdentityInProfileScorer
,FractionalIdentityScorer
,FractionalSimilarityInProfileScorer
,FractionalSimilarityScorer
,GuanUberbacher
,NeedlemanWunsch
,SimpleProfileProfileAligner
,SmithWaterman
,StandardRescoreRefiner
,SubstitutionMatrixScorer
public interface Scorer
Defines an algorithm which computes a score.
- Author:
- Mark Chapman
-
Method Summary
Modifier and TypeMethodDescriptiondouble
Returns score as a distance between 0.0 and 1.0.double
getDistance
(double scale) Returns score as a distance between 0.0 and scale.double
Returns maximum possible score.double
Returns minimum possible score.double
getScore()
Returns score resulting from algorithm.double
Returns score as a similarity between 0.0 and 1.0.double
getSimilarity
(double scale) Returns score as a similarity between 0.0 and scale.
-
Method Details
-
getDistance
double getDistance()Returns score as a distance between 0.0 and 1.0. This equals (getMaxScore()
-getScore()
) / (getMaxScore()
-getMinScore()
).- Returns:
- score as a distance between 0.0 and 1.0
-
getDistance
double getDistance(double scale) Returns score as a distance between 0.0 and scale. This equals scale * (getMaxScore()
-getScore()
) / (getMaxScore()
-getMinScore()
).- Parameters:
scale
- maximum distance- Returns:
- score as a distance between 0.0 and scale
-
getMaxScore
double getMaxScore()Returns maximum possible score.- Returns:
- maximum possible score
-
getMinScore
double getMinScore()Returns minimum possible score.- Returns:
- minimum possible score
-
getScore
double getScore()Returns score resulting from algorithm. This should normalize between 0 and 1 by calculating (getScore()
-getMinScore()
) / (getMaxScore()
-getMinScore()
).- Returns:
- score resulting from algorithm
-
getSimilarity
double getSimilarity()Returns score as a similarity between 0.0 and 1.0. This equals (getScore()
-getMinScore()
) / (getMaxScore()
-getMinScore()
).- Returns:
- score as a similarity between 0.0 and 1.0
-
getSimilarity
double getSimilarity(double scale) Returns score as a similarity between 0.0 and scale. This equals scale * (getScore()
-getMinScore()
) / (getMaxScore()
-getMinScore()
).- Parameters:
scale
- maximum similarity- Returns:
- score as a similarity between 0.0 and scale
-