#include <stdio.h>
#include <vector>
#include <string>
#include <math.h>
#include "mnist_common.h"
float accuracy(
const array& predicted,
const array& target)
{
array val, plabels, tlabels;
max(val, tlabels, target, 1);
max(val, plabels, predicted, 1);
return 100 * count<float>(plabels == tlabels) / tlabels.
elements();
}
float abserr(
const array& predicted,
const array& target)
{
return 100 * sum<float>(
abs(predicted - target)) / predicted.
elements();
}
{
}
const array &X,
const array &Y,
double lambda = 1.0)
{
array H = predict(X, Weights);
array Jreg = 0.5 *
sum(lambdat * Weights * Weights);
J = (Jerr + Jreg) / m;
dJ = (
matmulTN(X, D) + lambdat * Weights) / m;
}
double alpha = 0.1,
double lambda = 1.0,
double maxerr = 0.01,
int maxiter = 1000,
bool verbose = false)
{
float err = 0;
for (int i = 0; i < maxiter; i++) {
cost(J, dJ, Weights, X, Y, lambda);
err = max<float>(
abs(J));
if (err < maxerr) {
printf("Iteration %4d Err: %.4f\n", i + 1, err);
printf("Training converged\n");
return Weights;
}
if (verbose && ((i + 1) % 10 == 0)) {
printf("Iteration %4d Err: %.4f\n", i + 1, err);
}
Weights = Weights - alpha * dJ;
}
printf("Training stopped after %d iterations\n", maxiter);
return Weights;
}
void benchmark_logistic_regression(
const array &train_feats,
const array &train_targets,
{
array Weights = train(train_feats, train_targets, 0.1, 1.0, 0.01, 1000);
const int iter = 100;
for (int i = 0; i < iter; i++) {
array test_outputs = predict(test_feats , Weights);
}
printf(
"Prediction time: %4.4lf s\n",
timer::stop() / iter);
}
int logit_demo(bool console, int perc)
{
array train_images, train_targets;
array test_images, test_targets;
int num_train, num_test, num_classes;
float frac = (float)(perc) / 100.0;
setup_mnist<true>(&num_classes, &num_train, &num_test,
train_images, test_images,
train_targets, test_targets, frac);
int feature_length = train_images.
elements() / num_train;
array train_feats =
moddims(train_images, feature_length, num_train).
T();
array test_feats =
moddims(test_images , feature_length, num_test ).
T();
train_targets = train_targets.
T();
test_targets = test_targets.
T();
train_feats =
join(1,
constant(1, num_train, 1), train_feats);
test_feats =
join(1,
constant(1, num_test , 1), test_feats );
array Weights = train(train_feats, train_targets,
0.1,
1.0,
0.01,
1000,
true);
array train_outputs = predict(train_feats, Weights);
array test_outputs = predict(test_feats , Weights);
printf("Accuracy on training data: %2.2f\n",
accuracy(train_outputs, train_targets ));
printf("Accuracy on testing data: %2.2f\n",
accuracy(test_outputs , test_targets ));
printf("Maximum error on testing data: %2.2f\n",
abserr(test_outputs , test_targets ));
benchmark_logistic_regression(train_feats, train_targets, test_feats);
if (!console) {
test_outputs = test_outputs.
T();
display_results<true>(test_images, test_outputs, test_targets.
T(), 20);
}
return 0;
}
int main(int argc, char** argv)
{
int device = argc > 1 ? atoi(argv[1]) : 0;
bool console = argc > 2 ? argv[2][0] == '-' : false;
int perc = argc > 3 ? atoi(argv[3]) : 60;
try {
return logit_demo(console, perc);
std::cerr << ae.
what() << std::endl;
}
return 0;
}