computer_vision/harris.cpp
/*******************************************************
* Copyright (c) 2015, ArrayFire
* All rights reserved.
*
* This file is distributed under 3-clause BSD license.
* The complete license agreement can be obtained at:
* http://arrayfire.com/licenses/BSD-3-Clause
********************************************************/
#include <cstdio>
#include <arrayfire.h>
#include <cstdlib>
using namespace af;
static void harris_demo(bool console)
{
af::Window wnd("Harris Corner Detector");
// Load image
array img_color;
if (console)
img_color = loadImage(ASSETS_DIR "/examples/images/square.png", true);
else
img_color = loadImage(ASSETS_DIR "/examples/images/man.jpg", true);
// Convert the image from RGB to gray-scale
array img = colorSpace(img_color, AF_GRAY, AF_RGB);
// For visualization in ArrayFire, color images must be in the [0.0f-1.0f] interval
img_color /= 255.f;
// Calculate image gradients
array ix, iy;
grad(ix, iy, img);
// Compute second-order derivatives
array ixx = ix * ix;
array ixy = ix * iy;
array iyy = iy * iy;
// Compute a Gaussian kernel with standard deviation of 1.0 and length of 5 pixels
// These values can be changed to use a smaller or larger window
array gauss_filt = gaussianKernel(5, 5, 1.0, 1.0);
// Filter second-order derivatives with Gaussian kernel computed previously
ixx = convolve(ixx, gauss_filt);
ixy = convolve(ixy, gauss_filt);
iyy = convolve(iyy, gauss_filt);
// Calculate trace
array itr = ixx + iyy;
// Calculate determinant
array idet = ixx * iyy - ixy * ixy;
// Calculate Harris response
array response = idet - 0.04f * (itr * itr);
// Gets maximum response for each 3x3 neighborhood
//array max_resp = maxfilt(response, 3, 3);
array mask = constant(1,3,3);
array max_resp = dilate(response, mask);
// Discard responses that are not greater than threshold
array corners = response > 1e5f;
corners = corners * response;
// Discard responses that are not equal to maximum neighborhood response,
// scale them to original response value
corners = (corners == max_resp) * corners;
// Gets host pointer to response data
float* h_corners = corners.host<float>();
unsigned good_corners = 0;
// Draw draw_len x draw_len crosshairs where the corners are
const int draw_len = 3;
for (int y = draw_len; y < img_color.dims(0) - draw_len; y++) {
for (int x = draw_len; x < img_color.dims(1) - draw_len; x++) {
// Only draws crosshair if is a corner
if (h_corners[x * corners.dims(0) + y] > 1e5f) {
// Draw horizontal line of (draw_len * 2 + 1) pixels centered on the corner
// Set only the first channel to 1 (green lines)
img_color(y, seq(x-draw_len, x+draw_len), 0) = 0.f;
img_color(y, seq(x-draw_len, x+draw_len), 1) = 1.f;
img_color(y, seq(x-draw_len, x+draw_len), 2) = 0.f;
// Draw vertical line of (draw_len * 2 + 1) pixels centered on the corner
// Set only the first channel to 1 (green lines)
img_color(seq(y-draw_len, y+draw_len), x, 0) = 0.f;
img_color(seq(y-draw_len, y+draw_len), x, 1) = 1.f;
img_color(seq(y-draw_len, y+draw_len), x, 2) = 0.f;
good_corners++;
}
}
}
printf("Corners found: %u\n", good_corners);
if (!console) {
// Previews color image with green crosshairs
while(!wnd.close())
wnd.image(img_color);
} else {
// Find corner indexes in the image as 1D indexes
array idx = where(corners);
// Calculate 2D corner indexes
array corners_x = idx / corners.dims()[0];
array corners_y = idx % corners.dims()[0];
const int good_corners = corners_x.dims()[0];
std::cout << "Corners found: " << good_corners << std::endl << std::endl;
af_print(corners_x);
af_print(corners_y);
}
}
int main(int argc, char** argv)
{
int device = argc > 1 ? atoi(argv[1]) : 0;
bool console = argc > 2 ? argv[2][0] == '-' : false;
try {
af::setDevice(device);
std::cout << "** ArrayFire Harris Corner Detector Demo **" << std::endl << std::endl;
harris_demo(console);
} catch (af::exception& ae) {
std::cerr << ae.what() << std::endl;
throw;
}
return 0;
}