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Introduction - Scope of this Guide


This Guide aims at giving a general presentation of the General relativitY Orbit Tracer


of Observatoire de Paris, GYOTO (pronounced [dZIoto], as for the Italian trecento painter
Giotto di Bondone). This text is not a lecture on ray-tracing techniques and is only
devoted to presenting the code so that it can be quickly handled by any user. Readers
interested in the physics behind GYOTO are referred to Vincent et al. (2011, 2012, and
references therein). The aim of this Guide is also to present the code in su�cient details
so that people interested to develop their own version of GYOTO can do it easily.


GYOTO is an open source C++ code with a Yorick plug-in that computes null and time-
like geodesics in the Kerr metric as well as in any metric computed within the framework
of the 3+1 formalism of general relativity. This code allows to compute mainly images
and spectra of astrophysical sources emitting electromagnetic radiation in the vicinity of
compact objects (e.g. accretion disks or nearby stars).


As GYOTO is continually evolving, this guide will (hopefully) be regularly updated to
present the new functionalities added to the code. However, this guide does not constitute
a full reference. The reference manual is built from the C++ header �les using doxygen


into the doc/html/ directory of the source tree. It is also available online (rebuilt every
night) at http://gyoto.obspm.fr/.


The reader is strongly encouraged to give feedback on this Manual, report typos, ask
questions or suggest improvements by sending an email to frederic.vincent@obspm.fr
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1 Installing GYOTO


GYOTO is freely available at the URL http://gyoto.obspm.fr/. This URL hosts the
online manual of GYOTO, with installation instructions and brief descriptions of the code
architecture.


GYOTO is version-controlled with the git software that you should install on your
machine. Before uploading the code, be sure that the xerces-c3 (or xercesc3 depending
on the architecture) and cfitsio libraries are installed on your system: GYOTO won't
compile without these. It is also better (but not required) to install the udunits2 library.
Once this is done, just type on a command line


git clone git://github.com/gyoto/Gyoto.git


which will create a Gyoto repository. It contains directories bin, lib, include, doc,
yorick containing respectively the core code and executable, the .C source �les, the .h


headers, the documentation and Yorick plug-in related code.
In the Gyoto repository, use the standard


./configure; make; sudo make install


commands to build the code.
In case of problems, have a look at the INSTALL �le that gives important complemen-


tary informations on how to install GYOTO.


2 Basic usage


2.1 Using the gyoto command-line tool


The most basic way of using GYOTO is through the gyoto command-line tools. It relies
on two kinds of �les: an XML �le containing the inputs and a FITS �le containing the
outputs.


2.1.1 XML input �le


You can �nd examples of XML input �les in doc/examples/. Let us consider the compu-
tation of the image of a standard Page-Thorne accretion disk in Boyer-Lindquist coordi-
nates, described in example-page-thorne-disk-BL.xml.


If you are not familiar with XML language, just remember that an XML �le is
made of several �elds beginning with the <Field Name> and ending with </Field


Name>. One �eld can have sub-�elds, de�ned with the same symbols. For instance
in example-page-thorne-disk-BL.xml, there is one global �eld, Scenery, describing
the scenery that will be ray-traced, with a few sub-�elds: Metric describing the metric
used for the computation, here the Kerr metric in Boyer-Lindquist coordinates; Screen
describing the observer's screen properties; �nally Astrobj describing the astrophysical
object that will be ray-traced, here a Page-Thorne accretion disk. All the parameters in
this input �le can be changed to specify a new scenery.


Let us present in details the example-page-thorne-disk-BL.xml �le:
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<?xml version="1.0" encoding="UTF-8" standalone="no"?>


<Scenery>


The following lines specify the metric: it is the Kerr metric, expressed in Boyer-
Lindquist coordinates, with spin 0 (so the Schwarzschild metric here!):


<Metric kind = "KerrBL">


<Spin>


0.


</Spin>


</Metric>


The metric is now de�ned, let us describe the observer's screen. The Position �eld
gives the screen's 4-position in Boyer-Lindquist coordinates (t, r, θ, φ), angles in radians,
time and radius in geometrical units (i.e. units with c and G put to 1). The Time


�eld gives the time of observation. The FieldOfView is given in radians. The screen's
Resolution is the number of screen pixels in each direction.


<Screen>


<Position>


1000.


100.


1.22


0.


</Position>


<Time unit="geometrical_time">


1000.


</Time>


<FieldOfView>


0.314159265358979323846264338327950288419716


</FieldOfView>


<Resolution>


32


</Resolution>


</Screen>


The screen is now de�ned. The following line describes the target object that will be
ray-traced:


<Astrobj kind = "PageThorneDisk"/>


Here the target object is very simple and requires no speci�cations. The Scenery is
now fully de�ned and the �eld can be closed


</Scenery>


This is the end of the XML input �le!
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Figure 1: Image of a Page-Thorne thin accretion disk around a Schwarzschild black hole,
with a 32× 32 pixels screen.


2.1.2 Calling gyoto


We will now use the gyoto command-line tools to ray-trace the scenery described in this
XML �le. The command-line options are documented in the usual UNIX-style manpage:


$ man gyoto


Once the XML input �le is ready, the call to gyoto is done according to the following
line:


$ gyoto input.xml \!output.fits


where input.xml is the above mentioned XML �le and output.fits is the name of the
FITS that will contain the result of the computation. The ! before the .fits �le allows
to overwrite a pre-existing �le. If you remove it, an error will occur if the .fits �le
already exists.


The line above asks GYOTO to integrate a null geodesic from each pixel of the screen
backward in time towards the astrophysical object.


2.1.3 FITS output �le


Once the computation is performed, the output.fits �le is created. You can visualise
it by using the ds9 software (http://hea-www.harvard.edu/RD/ds9/site/Home.html)
and simply running:


$ ds9 ouput.fits


For instance, if you use the example-page-thorne-disk-BL.xml as is, you will obtain
Fig. 1.
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2.2 Parallelisation


Ray-tracing of several hundreds of light-rays is a problem that is easily parralelised,
by letting di�erent CPUs compute distinct geodesics. GYOTO o�ers several facilities to
perform such parallelisation, depending on the hardware and software environment.


2.2.1 Multi-threading


You can accelerate computations by using several cores on a computer using the ��nthreads=NCORES
option. NCORES is the number of threads that GYOTO will use. The optimal value is usually
the number of hardware CPU cores on the machine. This option can also be speci�ed in
the input �le using the <NThreads> entity. This facility does not work for LORENE-
based metrics (see Sect. 7).


2.2.2 Multi-processing


GYOTO is able to use the Message Passing Interface (MPI) to distribute the workload over
many CPUs, possibly hosted on di�erent computers. YOu can activate it by specifying
�nprocesses=NPROCS. NPROCS is the number of helper processes that GYOTO will spawn.
This does not include the main GYOTO process, which will act as a manager for the helpers.
This functionnality relies on Astrobj::�llElement() and Metric::�llElement() being prop-
erly implemented, which is not always the case for new classes. Also, classes that use
supplemental data (additional �les referenced to in the XML �le) do require that these
supplemental data be accessible to all the processes using the same absolute path. Most
notably, Lorene metrics require such data. Astrobj classes such as the PatternDisk also
require on-disk data.


2.2.3 Poor-mans parallelisation


Another cheap way of parallelising the computation is to call several gyoto instances,
running on di�erent CPUs or even on di�erent machines, each instance computing only
a portion of the image. This sort of basic parrallelisation is, naturally, supported by all
the GYOTO metrics.


You can ask GYOTO to compute only a fraction of the screen's pixels by running one
of:


$ gyoto -iIMIN:IMAX:DI -jJMIN:JMAX:DJ input.xml \!output.fits


$ gyoto --ispec=IMIN:IMAX:DI --jspec=JMIN:JMAX:DJ input.xml \!output.fits


$ gyoto --imin=IMIN --imax=IMAX --jmin=JMIN --jmax=JMAX --di=DI --dj=DJ \


input.xml \!output.fits


where IMIN, IMAX, JMIN, JMAX are the extremal indices of the pixels that will be computed.
DI and DJ are the step size in the i and j direction respictively. With the --ispec or -i
syntax, IMAX defaults to IMIN if there is no colon in the speci�cation, and to the image
resolution otherwise. For instance, to compute only the geodesic that hits the central
pixel of a 32× 32 screen, type one of:


$ gyoto -i16 -j16 input.xml \!output.fits


$ gyoto --ispec=16 --jspec=16 input.xml \!output.fits


$ gyoto --imin=16 --imax=16 --jmin=16 --jmax=16 input.xml \!output.fits
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To compute only the points with even i and od j, use (for instance) one of:


$ gyoto -i2::2 -j::2 input.xml \!output.fits


$ gyoto --ispec=2::2 --jspec=1::2 input.xml \!output.fits


$ gyoto --imin=2 --di=2 --jmin=1 --dj=2 input.xml \!output.fits


To compute only the lower-right quadrant of the image:


$ gyoto -i17: -j:16 input.xml \!output.fits


$ gyoto --ispec=17: --jspec=:16 input.xml \!output.fits


$ gyoto --imin=17 --jmax=16 input.xml \!output.fits


How to recombine the several output �les into a single FITS �le is left as an exercise
to the reader. It is easily done using any scienti�c interpreted language such as Yorick1


or Python2.


2.3 The gyotoy interface


The second most basic tool provided by GYOTO is gyotoy (Fig. 2). This is a graphical
user interface to visualize a single geodesic. See the README and INSTALL �les for the
prerequisites. Once the installation is complete, your launch gyotoy as:


$ gyotoy


or, from the yorick/ sub-directory of the built source tree:


$ ./yorick -i gyotoy.i


followed, on the Yorick prompt, by:


> gyotoy


You can select a KerrBL metric and set the spin, or any other metric de�ned in an XML


�le. As of writing, gyotoy assumes that the coordinate system is spherical-like. It should
work in Cartesian coordinates as well, but the labels will be odd. It is possible to select
which kind of geodesic to compute (time-like or light-like, using the Star or Photon radio
buttons), the initial position and 3-velocity of the particle, and the projection (a.k.a.
the position of the observer). The bottom tool bar allows selecting a few numerical
parameters such as whether or not to use an adaptive step. Menus allow saving or
opening the parameters as an XML �le, exporting the geodesic as a text �le, and saving
the view as an image �le in various formats. The view can be zoomed and panned by
clicking in the plot area.


3 Beyond the basics: scripting GYOTO


We have seen the two most basic ways of using GYOTO: computing a single frame using
the gyoto command-line tool, and exploring a single geodesic using the gyotoy interface.
There is much more that GYOTO can be used for: computing spectra, performing model-
�tting, computing movies, evaluating lensing e�ects etc.


1http://dhmunro.github.io/yorick-doc/
2https://www.python.org/
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Figure 2: The gyotoy graphical user interface.


3.1 Using the Python module


The Python module is constantly evolving and some details can change in future releases.
It is documented in a Pythonic way, so help(object) is your friend.


The Python module is split into several submodules:


gyoto.core expose the generic framework compiled in libgyoto;


gyoto.std expose the derived classes compiled in the standard plug-in, libgyoto-stdplug;


gyoto.lorene expose the derived classes compiled in the Lorene plug-in, libgyoto-lorene;


gyoto.metric, gyoto.astrobj, gyoto.spectrometer, gyoto.spectrum regroup the var-
ious Metrics, Astrobjs, etc. from the various extensions;


gyoto.util contains a few high-level wrappers and helper functions;


gyoto.animate contains a frame-work for producing videos based on Gyoto.


3.1.1 Building and installing


How to build and install these extensions is documented in INSTALL. At the moment,
this is not done automatically. The requisites are:


� Python 3, including the development �les;


� Swig (tested with 2.0.12 and 3.0.2);


� NumPy, installed with its development �les for the speci�c Python interpreter you
plan on using.


For instance, on Debian Buster, to use compile the gyoto extension for Python 3.7, you
need the packages:
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� python3.7-dev;


� python3-numpy;


� swig or swig2.0.


Con�gure the Gyoto source tree specifying the Python interpreter (if you don't want
to use the default on your system), build and install gyoto, then move to the python/


subdirectory, build and install:


$ ./configure PYTHON=/usr/bin/python3.7


$ make


$ sudo make install


$ cd python


$ make


$ sudo make install


Depending on your system, you may need to add the directory where the gyoto/ directory
containing __init__.py has been installed to your PYTHONPATH variable.


3.1.2 Using


Some sample code can be found in python/example.py. The Python extension matches
the C++ API very closely, so the C++ reference in doc/html/ is quite relevant. Most
of it can also be accessed through the Python function 'help'.


The gyoto.core module should be enough to perform ray-tracing on anykind of
objects, even located in plug-ins:


Importing gyoto, gyoto.core or gyoto.std would normally load the standard plug-
in for you, but this is how you would do it manually:


import gyoto.core


gyoto.core.requirePlugin("stdplug")


Get help on Gyoto:


help(gyoto.core)


Read scenery from XML:


a=gyoto.core.Factory("../doc/examples/example-moving-star.xml")


sc=a.scenery()


or:


import gyoto.util


sc=gyoto.util.readScenery("../doc/examples/example-moving-star.xml")


Create Astrobj by name, access property by name:


tr=gyoto.core.Astrobj('Torus')


tr.set('SmallRadius', 0.5)
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To access methods of speci�c derived classes (for instance the Star API, which allows
computing time-like geodesics), the python extension for a speci�c Gyoto plug-in must
be imported:


from gyoto import std


st=std.Star()


The various submodules and extensions are fully compatible with each other:


sc=gyoto.core.Scenery()


st=std.Star()


sc.astrobj(st)


Pointers to the base classes can be up-cast to derived classes:


ao = sc.astrobj() # ao contains a Gyoto::Astrobj::Generic * pointer


st = std.Star(ao) # if conversion fails, error is thrown


The source directory contains several examples and test cases. The Python source for
gyoto.util and gyoto.animate also provide rich examples, always more up-to-date than
the present documentation.


3.2 Using the Yorick plug-in


Warning: the Yorick plug-in will not be udated with new features anymore and we plan
on phasing it out has soon as gyotoy has been ported to Python. If in doubt, use Python
instead.


Yorick is a fairly easy to learn interpreted computer language. We provide a Yorick
plug-in which exposes the GYOTO functionalities to this language. This plug-in is self
documented: at the Yorick prompt, try:


> #include "gyoto.i"


> help, gyoto


A lot of the GYOTO test suite is written in Yorick, which provides many example code in
the various *.i �les in the yorick/ directory of the GYOTO source tree. Another example
is provided by the gyotoy graphical interface (Sect. 2.3).


For Yorick basics, see:


� https://github.com/dhmunro/yorick;


� http://dhmunro.github.io/yorick-doc/;


� http://yorick.sourceforge.net/;


� http://www.maumae.net/yorick/doc/index.php.


As a very minimalist example, here is how to ray-trace an XML scenery into a FITS
�le in Yorick:


$ rlwrap yorick
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This launches Yorick within the line-editing facility rlwrap (provided separately). Then,
from the Yorick prompt:


> #include "gyoto.i"


> restore, gyoto;


> sc = Scenery("input.xml");


> data = sc(,,"Intensity");


> fits_write, "output.fits", data;


or, in two lines:


> #include "gyoto.i"


> fits_write, "output.fits", gyoto.Scenery("input.xml")(,,"Intensity");


Likewise, to integrate the spectrum over the �eld-of-view:


> #include "gyoto.i"


> restore, gyoto;


> sc = Scenery("input.xml");


> data = sc(,,"Spectrum[mJy.pix-2]");


> spectrum = data(sum, sum, );


> freq = sc(screen=)(spectro=)(midpoints=, unit="Hz");


> plg, spectrum, freq;


> xytitles, "Frequency [Hz]", "Spectrum [mJy]";


MPI multi-processing is also available from within Yorick. To activate this function-
ality, you must call gyoto.mpiInit early in your script. Spawn the required number of
processes using the mpispawn method, and don't forget to use the mpiclone method.
Although not strictly necessary, it is also recommended to explicitely terminate helper
processes that have been spawned in the background (using mpispawn=0, and to call
gyoto.mpiFinalize at the very end of your script:


> #include "gyoto.i"


> restore, gyoto;


> // call MPI_Init():


> mpiInit;


> sc = Scenery("input.xml");


> // spawn helpers and send them the scenery


> sc, mpispawn=12, mpiclone=;


> // compute stuff


> data =sc();


> // shut down the helper processes


> sc, mpispawn=0;


> // shut down MPI


> mpiFinalize;


> quit;


The Yorick plug-in is not generated automatically. Therefore only a subset of the
Gyoto API is exposed. However, all the properties of any object (most of what can be
set in XML) can be read and written from Yorick, with the possibility of specifying a
unit for properties that support it:
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> #include "gyoto.i"


> restore, gyoto;


> tr = Astrobj("Torus");


> noop, tr.SmallRadius(0.5, unit="geometrical");


> small_radius_in_meters=tr.SmallRadius(unit="m");


> tr, SmallRadius=0.5, unit="geometrical", LargeRadius=5e6, unit="m";


> large_radius_in_default_unit=tr(LargeRadius=);


3.3 Other languages


The Python extension (Sect. 3.1) is generated automatically using the Swig tool, with
only little python-speci�c code. It should therefore be rather easy to compile extensions
for the other languages that Swig supports (Tcl, java, R, and many others). If you want
it to happen, feel free to contact the Gyoto developers.


3.4 Interfacing directly to the GYOTO library


The core functionality is provided as a C++ shared library, which is used both by the
gyoto command-line tool and the Yorick plug-in. You can, of course, interface directly
to this library. The reference is generated from the source code using doxygen in the
directory doc/html/. The application binary interface (ABI) is likely to change with
every commit. We try to maintain a certain stability in the application programming
interface (API), and to maintain a stable branch whic honly sees bug-�xes between o�cial
releases. But the e�ort we put into this stability is function of the needs of our users. If
you start depending on the GYOTO library, please contact us (gyoto@sympa.obspm.fr):
we will try harder to facilitate your work, or at least warn you when there is a signi�cant
API change.


4 Choosing the right integrator


Numerical ray-tracing can be very much time-consuming. In order to control the nu-
merical errors in your application, it is wise to experiment with the numerical tuning
parameters. GYOTO provides several distinct integrators (depending on compile-time op-
tions):


� the Legacy integrator, the �rst to have been introduced;


� Boost3 integrators from the odeint4 library. In GYOTO, they are called runge_kutta_*
(see below).


The integrator and its numerical tuning parameters can be speci�ed in either of these
three XML sections:


Scenery to specify the integrator and parameters used during ray-tracing by the indi-
vidual photons;


3http://www.boost.org/
4http://www.boost.org/doc/libs/1_55_0/libs/numeric/odeint/doc/html/index.html
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Photon if the XML �le describes a single photon (the Yorick plug-in and the gyotoy tool
can make use of such an XML �le);


Astrobj if it is a Star, for specifying the integrator and parameters used to compute the
orbit of this star.


The full set of tuning parameters that may be supported by the Scenery section is:


<Scenery>


<Integrator> runge_kutta_fehlberg78 </Integrator>


<AbsTol> 1e-6 </AbsTol>


<RelTol> 1e-6 </RelTol>


<DeltaMax> 1.79769e+308 </DeltaMax>


<DeltaMin> 2.22507e-308 </DeltaMin>


<DeltaMaxOverR> 1.79769e+308 </DeltaMaxOverR>


<MaxIter> 100000 </MaxIter>


<Adaptive/>


<Delta unit="geometrical"> 1 </Delta>


<MinimumTime unit="geometrical_time"> -1.7e308 </MinimumTime>


</Scenery>


Integrator the integrator to use (one of the runge_kutta_* or Legacy; default: if
compiled-in, runge_kutta_fehlberg78);


AbsTol 5 absolute tolerance for adapting the integration step (see http://www.boost.
org/doc/libs/1_55_0/libs/numeric/odeint/doc/html/boost_numeric_odeint/


odeint_in_detail/generation_functions.html);


RelTol 5 relative tolerance for adapting the integration step (idem);


DeltaMax 6 the absolute maximum value for the integration step (defaults to the largest
possible non-in�nite value);


DeltaMin 6 the absolute minimum value (defaults to the smallest possible strictly pos-
itive value);


DeltaMaxOverR 6 this is h = δmax/r such that, at any position, the integration step
may not be larger than h × r where r is the current distance to the centre of the
coordinate system (defaults to 1).


MaxIter maximum number of integration steps (per photon);


Adaptive (or NonAdaptive) whether or not to use an adaptive step;


Delta integration step, initial in case it is adaptive. Not very important, but should be
commensurable with the distance to the Screen (i.e. don't use Delta= 10−6 if the
screen is at 1013 geometrical units!). Delta can be speci�ed in any distance-like or
time-like unit.


5The Legacy integrator does not support the AbsTol nor the RelTol parameters
6The Legacy integrator take the DeltaMin, DeltaMax and DeltaMaxOverR parameters in the Metric


section.
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MinimumTime stop integration when the photon travels back to this date. Defaults
to the earliest possible date. Can be speci�ed in any time-like or distance-like unit.


4.1 The Boost integrators


If GYOTO was compiled with a C++11-capable compiler and with the Boost library (ver-
sion 1.53 or above), then the following integrators are available:


� runge_kutta_cash_karp54;


� runge_kutta_fehlberg78;


� runge_kutta_dopri5;


� runge_kutta_cash_karp54_classic (alternate implementation of
runge_kutta_cash_karp54).


Those integrators are implemented in the Worldline object. This has the advantage
that, when ray-tracing the image of a moving star (Star class), the star can use a di�erent
integrator than the photons. These integrators support all of the parameters described
above.


4.2 The Legacy integrator


The Legacy integrator is a home-brewed 4th-order, adaptive-step Runge�Kutta integra-
tor. It is always available, independent of any compile-time options. It does not support
AbsTol nor RelTol, and takes DeltaMin, DeltaMax and DeltaMaxOver in the Metric


section, not in the Scenery or Astrobj section. It is not possible to use di�erent tuning
parameters for the Star and the Photons if both use the Legacy integrator.


The Legacy integrator is implemented in the Metric object and may be re-implemented
by speci�c Metric kinds. Most notably, the KerrBL metric reimplements it (this speci�c
implementation takes advantage of the speci�c constants of motion). When a metric
reimplements the Legacy integrator, it is possible to choose which implementation to
choose by specifying either <GenericIntegrator> or <SpecificIntegrator> in the
<Metric> section. The KerrBL speci�c implementation of the Legacy integrator accepts
one additional tuning parameter: DiffTol, which defaults to 10−2 and empirically seems
to have very little actual impact on the behaviour of the integrator.


4.3 Integrator comparison


It is advisable to try the various integrators in your context, and to play with the tuning
parameters. As a rule of thumbs, if you need to change DeltaMin, DeltaMax, Delta-
MaxOverR, or MaxIter, it probably means that you should change for a higher-order
integrator. The highest order integrator is currently runge_kutta_fehlberg78 and is
the default.


As an example, we have compared all the integrators for a simple situation: the Metric
is a Schwarzschild black-hole of 4× 106M⊙, the Screen is at 8 kpc, a single light-ray is
launched 50µas from the centre, we integrate the light-ray (back in time) during twice
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Figure 3: Comparison of the integrators when measuring a de�ection angle (see text).
Left: error on de�ection angle vs. tuning parameter; centre: computing time vs. tun-
ing parameter; right: computing time vs. error on de�ection angle. Colours denote the
integrator: red: Legacy (solid: speci�c KerrBL implementation, dash-dotted: generic im-
plementation); black: runge_kutta_fehlberg78; blue: runge_kutta_karp54; magenta:
runge_kutta_dopri5.


the travel-time to the origin of the coordinate centre and compute the de�ection angle.
We do that for each integrator and a set of numerical tuning parameters. For the Legacy
integrator, we try both the generic integrator and the speci�c KerrBL implementation, and
use DeltaMaxOverR as tuning parameter. For the Boost integrators, we use AbsTol and
RelTol as tuning parameters (they are kept equal to each-other). We then compare the
result for two values of the tuning parameter and measure the computing time required
for each realisation.


For each integrator, there exists an optimum value or the tuning parameter, for which
the (estimated) uncertainty in de�ection angle is minimal (Fig. 3, left panel). As long as
the tuning parameter is larger than (or equal to) this optimum, computation time varies
very little (central panel). However, when the tuning parameter becomes too small,
numerical error and computation time explode (right panel).


The two low-order Boost integrators are the fastest, the two Legacy integrators are
the slowest. The default, runge_kutta_fehlberg78, has intermediate performance, but
seems to yield the smallest error and to be less sensitive on the exact value of the tuning
parameter close to its optimum.


All the integrators except the generic implementation of the Legacy integrator agree
to within 2µas on the de�ection angle, which is of order 33Â°. The relative uncertainty
is therefore of order 10−11.


In conclusion, for this speci�c use case, the best choice seems to be:


<Scenery>


<Integrator>runge_kutta_fehlberg78</Integrator>


<AbsTol>1e-19</AbsTol>


<RelTol>1e-19</RelTol>


</Scenery>


If computation time is more critical than accuracy, the other Boost integrators are also
good choices.


The Yorick code that was used to generate Fig. 3 is provided in the GYOTO source code
as yorick/compare-integrators.i. You can run it from the top directory of the built
source tree as:
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yorick/yorick -i yorick/compare-integrators.i


5 GYOTO architecture


5.1 GYOTO base classes


GYOTO is basically organised around 8 base classes (see Fig. 4):


� The Metric class: it describes the metric of the space-time (Kerr in Boyer-Lindquist
coordinates, Kerr in Kerr-Schild coordinates, metric of a relativistic rotating star
in 3+1 formalism...).


� The Astrobj class: it describes the astrophysical target object that must ray-traced
(e.g. a thin accretion disk, a thick 3D disk, a star...).


� The Spectrum class: it describes the emitted spectrum of the Astrobj.


� The Worldline class: it gives the evolving coordinates of a time-like or null geodesic.
The Star class is a sub-class of Worldline as for the time being a star in GYOTO is
only described by the time-like geodesic of its centre, with a given �xed radius.


� The WorldlineIntegState class: it describes the integration of the Worldline in
the given Metric.


� The Screen class: it describes the observer's screen, its resolution, its position in
space-time, its �eld of view.


� The Scenery class: it describes the ray-tracing scene. It is made of a Metric,
a Screen, an Astrobj and the quantities that must be computed (an image, a
spectrum...).


� The Factory class: it allows to translate the XML input �le into C++ objects.


Fig. 4 presents the main GYOTO classes and their hierarchy.


5.2 A typical GYOTO computation


Let us now describe the main interactions of these various classes during the computation
of one given photon, ray-traced in the Kerr metric in Boyer-Lindquist coordinates towards,
for instance, a PageThorneDisk, i.e. a geometrically thin optically thick disk following
Page and Thorne (1974).


All directories used in the following are located in GYOTO home directory.
GYOTO main program is located in bin/gyoto.C. This program �rst interprets the


command line given by the user. It creates a new Factory object, initialised by means of
the XML input �le, that will itself create (see lib/Factory.C) the Scenery, Screen and
Astrobj objects. The output quantities the user is interested in (image, spectrum...) will
be stored during the computation in the data object, of type Astrobj::Properties. The
Scenery object is then used to perform the ray-tracing, by calling its rayTrace function.
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Gyoto: :Metric


Gyoto: :Metric: :KerrBL


Gyoto: :Metric: :KerrKS


Gyoto: :Metric: :RotStar3_1


Gyoto: :Astrobj


Gyoto: :Astrobj: :Complex


Gyoto: :Astrobj: :Standard


Gyoto: :Astrobj: :ThinDisk


Gyoto: :Factory


Gyoto: :WorldlineIntegState


Gyoto: :Scenery


Gyoto: :Screen


Gyoto: :Astrobj: :ThinDiskPL


Gyoto: :Astrobj: :Disk3D


Gyoto: :Astrobj: :Torus


Gyoto: :Astrobj: :UniformSphere


Gyoto: :Astrobj: :PageThorneDisk


Gyoto: :Astrobj: :PatternDisk Gyoto: :Astrobj: :PatternDiskBB Gyoto: :Astrobj: :DynamicalDisk


Gyoto: :Astrobj: :Star


Gyoto: :Astrobj: :FixedStar


Gyoto: :Astrobj: :Disk3D_BB


Gyoto: :Spectrum::Generic


Gyoto: :Spectrum::BlackBody


Gyoto: :Spectrum::PowerLaw


Gyoto: :Worldline


Gyoto: :Astrobj: :Star


Gyoto: :Photon


Figure 4: Hierarchy of GYOTO C++ main classes.
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All the functions that begin with fits_ allow to store the �nal output quantities in FITS


format.
The function Scenery::rayTrace calls Photon::hit that forms the core of


GYOTO: Photon::hit integrates the null geodesic from the observer's screen back-
ward in time until the target object is reached (there are other stop conditions
of course, see lib/Photon.C). Photon::hit is basically made of a loop that calls
the function WorldlineIntegState::nextStep until a stop condition is reached.
WorldlineIntegState::nextStep itself calls the correct adaptive fourth order Runge-
Kutta integrator (RK4) , depending on the metric used. Here, the metric being KerrBL,
the RK4 used is KerrBL::myrk4_adaptive.


Moreover, the Photon::hit also calls the Astrobj::Impact function that asks
the Astrobj whether the integrated photon has reached it or not. When
the photon has reached the target, this Astrobj::Impact function calls the
Astrobj::processHitQuantities function that updates the data depending on the
user's speci�cations.


6 Computing an image or a spectrum in the Kerr met-


ric with GYOTO


6.1 The Screen


The observer's Screen is made of N ×N pixels, and has a �eld of view of f radians. The
�eld of view is de�ned as the maximum angle between the normal to the screen and the
most tangential incoming geodesic.


Keep in mind that the screen is point-like, the di�erent pixels are all at the same
position (the one and only screen position de�ned in the XML �le), but the various pixels
de�ne various angles on the observer's sky. For instance, if f = π/2 (which gives a view
of the complete half space in front of the screen), the geodesic that hits the screen on the
central pixel (i = N/2, j = N/2) comes from the direction normal to the screen whereas
the geodesic that hits the screen on the (i = N, j = N/2) pixel comes from a direction
tangential to the screen.


Each pixel of the screen thus covers a small solid angle on the observer's sky. This
elementary solid angle is equal to the solid angle subtended by a cone of opening angle f
divided by the number of pixels: δΩpixel = 2π (1− cos f)/N2 (assuming the �eld of view
is small enough).


6.2 Computing an image


The quantity that is carried along the geodesics computed by GYOTO in most cases is the
speci�c intensity Iν (erg cm−2 s−1 ster−1Hz−1).


An image is then de�ned as a map of speci�c intensity: each pixel of the screen
contains one value of Iν , that can then be plotted. It is important to keep in mind that
such an "image" is not physically equivalent to a real image that would be obtained with
a telescope: a real image is a map of speci�c �uxes values, and a speci�c �ux is the sum
of the speci�c intensity on some solid angle.
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An example of image computation has already been given in Section 2.1.


6.3 Computing a spectrum


To compute a spectrum, the Screen �eld of the XML �le should contain information about
the observed frequency range. For a real telescope, this means adding a spectrometer.
The additional command in the XML �le is thus:


<Spectrometer kind="freqlog" nsamples="20">5. 25.</Spectrometer>


This line means that that 20 values of observed frequencies will be considered, evenly
spaced logarithmically, between 105 and 1025 Hz. It is possible to choose frequencies
linearly evenly spaced by using freq instead of freqlog. It is also possible to use wave-
lengths instead of frequencies, see GyotoScreen.h for more information.


Moreover, the XML �le should explicitly state that the quantity of interest is no longer
a simple image, but a spectrum. This is allowed by the following command, that should
be added for instance before the end of Scenery �eld:


<Quantities>Spectrum</Quantities>


When this command is used, the output FITS �le will contain a cube of images, each
image corresponding to one observed frequency.


Computing the spectrum is now straightforward. Remembering that the �ux is linked
to the intensity by:


dFνobs = Iνobs cos θ dΩ, (1)


where Ω is the solid angle under which the emitting element is seen, and θ is the angle
between the normal to the observer's screen and the direction of incidence, the �ux is
given by:


Fνobs =
∑
pixels


Iνobs,pixel cos(θpixel) δΩpixel, (2)


where Iνobs,pixel is the speci�c intensity reaching the given pixel, θpixel is the angle between
the normal to the screen and the direction of incidence corresponding to this pixel and
δΩpixel is the element of solid angle introduced above.


This quantity Fνobs can thus be very simply computed from the cube of speci�c in-
tensities computed by GYOTO. Examples of spectra computed by GYOTO can be found in,
e.g., Straub et al. (2012). Section 3.2 contains example code to compute a spectrum di-
rectly using the provided Yorick interface. See also yorick/check-polish-doughnut.i,
which does just that as part of the routine test suite of GYOTO.


7 GYOTO in numerical metrics


A speci�city of GYOTO is its ability to ray-trace in non-Kerr metrics, numerically computed
in the framework of the 3+1 formalism of general relativity (Gourgoulhon 2012), e.g. by
means of the open source LORENE library developed by the Numerical Relativity group
at Observatoire de Paris/LUTH7.


7http://www.lorene.obspm.fr/
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For the time being, only a simple example of numerical metric is implemented
in the public version of GYOTO: the metric of a relativistic rotating star. The �le
doc/examples/example-movingstar-rotstar3_1.xml allows to ray-trace a basic GYOTO
moving Star in this metric. The �le resu.d speci�ed in the XML �le is the out-
put of a LORENE computation for the metric of a rotating relativistic star by the
LORENE/nrotstar code.


The basic functions developed in lib/RotStar3_1.C are similar to their Kerr coun-
terparts, but here the metric is expressed in terms of the 3+1 quantities (lapse, shift,
3-metric, extrinsic curvature). The equation of geodesics expressed in the 3+1 formalism
is given in Vincent et al. (2012) and implemented in lib/RotStar3_1.C. However, it is
possible to choose in the XML �le whether the integration will be performed by using this
3+1 equation of geodesics, or by using the most general 4D equation of geodesics (see
Vincent et al. 2011, for a comparison of the two methods).


8 Local tetrads: setting the Screen orientation


The orientation of the camera (implemented by the class Gyoto::Screen in C++ and
gyoto.core.Screen in Python) is determined by a local tetrad of the observer composed of
four 4-vectors (u⃗, e⃗l, e⃗u, e⃗f ) which form an orthonormal local basis and where:


u⃗ is the 4-velocity of the observer;


e⃗l points to the left-hand side of the observer;


e⃗u points up;


e⃗f points front, i.e. in the direction where the observer is looking.


In the following, (e⃗t, e⃗r, e⃗θ, e⃗φ) is the usual spherical local basis, which can also be
de�ned for Cartesian coordinate systems (t, x, y, z) such as KerrKS as follows:


r =
√


x2 + y2 + z2


rp =
√


x2 + y2


θ = atan2(rp, z)
φ = atan2(y, x)
e⃗t = (1, 0, 0, 0)
e⃗r = (0, x/r, y/e, z/r)
e⃗θ = (0, cos θ cosφ, cos θ sinφ,− sin θ)
e⃗φ = (0,− sinφ, cosφ, 0)


The Screen interface provides several ways to specify this tetrad with the concept of
ObserverKind (XML entity), which can be set using the Screen method observerKind():


ObserverAtInfinity the default, does no special treatment, which implicitly assumes
(u⃗, e⃗l, e⃗u, e⃗f ) = (e⃗t,−e⃗φ,−e⃗θ,−e⃗r). In this case, the Screen orientation can be �ne-
tuned using the XML entities PALN, Dangle1 and Dangle2, corresponding to the
methods PALN(), dangle1() and dangle2(). This default is �ne for most cases,
i.e. when the observer really is far from the the central object (more than a few 10
geometrical units) and at rest.
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ZAMO is the natural extension of ObserverAtInfinity in stronger �eld. u⃗ is �rst com-
puted using the Metric method zamoVelocity which returns e⃗t projected in the
hyperplane orthogonal to e⃗φ and then normalized. This is the velocity of a zero-
angular-momentum observer. Then, the base (u⃗,−e⃗θ,−e⃗r,−e⃗φ) is orthonormalized
into (u⃗, e⃗u, e⃗f , e⃗l) using the Gram�Schmidt process as implemented in the Metric
method GramSchmidt. The order of this orthonormalization matters to get the same
tetrad as propsed by Krolik, Hawley & Hirose (2005, ApJ:622:1008), implemented
in KerrBL.


VelocitySpecified applies the same process but using a user-supplied, arbitrary 4-
velocity using the XML entity FourVel or the Screen method fourVel.


FullySpecified is the most versatile, since the user provides the four vectors using the
XML entities FourVel (u⃗), ScreenVector1 (e⃗l), ScreenVector2 (e⃗u) and ScreenVector3
(e⃗f ) (the corresponding methods are the same, starting with �rst letter in lower
case). The user is then responsible for providing a direct, orthonormal basis. For
constructing this basis, the user can use the helper functions described below.


In the rest of this section, we will use the Python API to document and demonstrate
the use of the various helper methods that can be used to construct a local tetrad. Those
lines can be translated to C++ in a trivial manner. Let MetricKind be a Metric kind
(e.g. KerrBL, KerrKS or other), AstrobjKind be a kind of Astrobj, and x0, x1, x2, x3 be
coordinates in this Metric.


from gyoto import core


import numpy


from matplotlib import pyplot as plt


metric=core.Metric('KerrBL') # make and initialize a metric


scr=core.Screen() # make a Screen


scr.metric(metric)


scr.resolution(32)


scr.fieldOfView(60, 'degree')


scr.anglekind('Rectilinear')


ao=core.Astrobj('ThinDisk') # make an astrobj,


ao.metric(metric) # initialize it


ao.set('InnerRadius', 6.)


ao.rMax(200)


sc=core.Scenery() # make Scenery


sc.metric(metric) # assign metric


sc.astrobj(ao) # assign astrobj


sc.screen(scr) # assign screen


x0, x1, x2, x3=0., 15., numpy.pi/4, numpy.pi/4


pos=numpy.asarray([x0, x1, x2, x3]) # this is a 4 position


scr.setObserverPos(pos) # set observer position


fourvel=numpy.zeros(4) # NumPy array for 4-velocity
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Now we can set the observer kind and ray-trace. The default would be:


scr.observerKind('ObserverAtInfinity')


results=sc.rayTrace()


which will not work that close to the central object (15 geometrical units in this example).


scr.observerKind('ZAMO')


results=sc.rayTrace()


would always work, though. ZAMO stands for `zero angular momentum observer'. One
can display the intensity image:


plt.imshow(results['Intensity'], origin='bottom')


plt.show()


To try ObserverKind==VelocitySpecified, we need to get a 4-velocity. Several
methods can help with that (see for instance help(core.Metric.circularVelocity)),
but to continue with the same example we shall retrieve the velocity of a ZAMO with:


metric.zamoVelocity(pos, fourvel)


Once the velocity vector has been set, one just needs to assign it to the Screen:


scr.observerKind('VelocitySpecified')


scr.fourVel(fourvel)


results=sc.rayTrace()


plt.imshow(results['Intensity'], origin='bottom')


plt.show()


zamoVelocity is always de�ned. It provides a velocity with zero angular momentum.
KerrBL.zamoVelocity is an optimised implementation, compatible with the generic one
which projects e⃗t on the hyperplane orthogonal to e⃗φ. The same could be implemented
in Python like this:


ephi = numpy.asarray([0., 0., 0., 1.])


fourvel = numpy.asarray([1., 0., 0., 0.])


if metric.coordKind()==core.GYOTO_COORDKIND_SPHERICAL:


ephi = numpy.asarray([0., 0., 0., 1.])


else:


phi=numpy.arctan2(pos[2], pos[1]);


cp=numpy.cos(phi)


sp=numpy.sin(phi)


ephi=numpy.asarray([0., -sp, cp, 0.])


metric.projectFourVect(pos, fourvel, ephi)


metric.multiplyFourVect(fourvel, 1./abs(metric.norm(pos, fourvel)))


The snippet above has introduced three methods:
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metric.multiplyFourVect(fourvel, scalar)


just multiplies each element of fourvel by scalar. This C++ convenience method does
the same as the more Pythonic:


fourvel *= scalar


where fourvel is a NumPy array and scalar a... scalar. Likewise, for adding two
vectors, this:


metric.addFourVect(fourvel, v)


is equivalent to this:


fourvel += v


where fourvel and v are two NumPy arrays of 4 elements.


metric.norm(pos, fourvel)


norm returns the norm of a 4-vector: ∥v⃗∥ = sgn(v⃗ · v⃗)
√


|v⃗ · v⃗|. It could also be computed
as:


n2=metric.ScalarProd(pos, fourvel, fourvel)


numpy.sign(n2)*numpy.sqrt(abs(n2))


where ScalarProd implements the scalar product.


metric.projectFourVect(pos, fourvel, ephi)


projects fourvel on the hyperplane orthogonal to ephi and returns the projected vector
in place. The mathematical equivalent would be


projv⃗(u⃗) = u⃗− sgn(∥v∥)(u⃗ · v⃗


|∥v⃗∥|
)


v⃗


|∥v⃗∥|


VelocitySpecified instructs the Screen to build a local tetrad for a camera looking
towards the origin. The same can be done with FullySpecified like this:


scr.observerKind('FullySpecified')


el=numpy.zeros(4)


eu=numpy.zeros(4)


ef=numpy.zeros(4)


metric.observerTetrad(pos, fourvel, el, eu, ef)


scr.fourVel(fourvel)


scr.screenVector1(el)


scr.screenVector2(eu)


scr.screenVector3(ef)


results=sc.rayTrace()


plt.imshow(results['Intensity'], origin='bottom')


plt.show()
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If fourvel has been set using metric.zamoVelocity(pos, fourvel), this actually
is equivalent to setting ObserverKind to 'ZAMO'.


The method gyoto.animate.orbiting_screen_forward provides a complete exam-
ple where the local tetrad is computed in Python, orthonormalized using metric.GramSchmidt
and passed to the Screen where the property ObserverKind has been set to FullySpecified.
We comment on a simpli�ed version below.


The goal of this code is to set the camera such that it looks in the direction where
the Screen is moving, so e⃗f is initialized as the 3-velocity (0, ẋ1/ẋ0, ẋ2/ẋ0, ẋ3/ẋ0). e⃗u
is initialized as projef (e⃗r) and normalized. It is therefore a vector pointing away from
the central object, orthogonal to ef and normal (in the 3D Euclidian sense). We set
e⃗l = e⃗u × e⃗f where × denotes the 3D external (vector) product. Thus, (e⃗l, e⃗u, e⃗f ) would
form an orthonormal basis of a Euclidian 3D space. We then use the Gram�Schmidt
process to orthonormalize the tetrad (u⃗, e⃗u, e⃗f , e⃗l) in the metric sense. Most computations
are done in Cartesian 3D coordinates, for the sake of computing the external product
easily.


pos=numpy.asarray([x0, x1, x2, x3]) # this is a 4 position


fourvel=numpy.zeros(4)


metric.circularVelocity(pos, fourvel)


# pos and fourvel have been initialized previously


coord=numpy.concatenate((pos, fourvel))


ef=numpy.zeros(4)


# get Cartesian expression of 3-velocity into ef[1:]:


metric.cartesianVelocity(coord, ef[1:])


# normalize ef to 1 (in 3D):


ef /= numpy.sqrt((ef*ef).sum())


# get Cartesian expression of position in posc


# as well as spherical radius in r:


if metric.coordKind()==core.GYOTO_COORDKIND_SPHERICAL:


t=pos[0]


r=pos[1]


theta=pos[2]


phi=pos[3]


st=numpy.sin(theta)


ct=numpy.cos(theta)


sp=numpy.sin(phi)


cp=numpy.cos(phi)


posc=[pos[0], r*st*cp, r*st*sp, r*ct]


else:


posc=pos


r=numpy.sqrt(pos[1:]**2).sum()


# Now initialize eu as er, but project it orthogonally to ef in 3D


# and then normalize it:


eu=numpy.concatenate(([0.], posc[1:]/r))


eu -= (ef*eu).sum()*ef


eu /= numpy.sqrt((eu*eu).sum())
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# Last vector is el, which we construct as the 3D vector product


# between eu and ef, computed in Cartesian coordinates:


el=numpy.zeros(4)


el[1]=eu[2]*ef[3]-eu[3]*ef[2]


el[2]=eu[3]*ef[1]-eu[1]*ef[3]


el[3]=eu[1]*ef[2]-eu[2]*ef[1]


# If the coordinate system is spherical, we need to convert back:


if metric.coordKind()==core.GYOTO_COORDKIND_SPHERICAL:


er=posc/r


ephi=numpy.asarray([0., -sp, cp, 0.])


etheta=numpy.asarray([0., ct*cp, ct*sp, -st])


ef=numpy.asarray([


0.,


(er*ef).sum(),


(etheta*ef).sum(),


(ephi*ef).sum()


])


eu=numpy.asarray([


0.,


(er*eu).sum(),


(etheta*eu).sum(),


(ephi*eu).sum()


])


el=numpy.asarray([


0.,


(er*el).sum(),


(etheta*el).sum(),


(ephi*el).sum()


])


# Our 3 vectors form an orthonormal basis in the Euclidian sense,


# but the tetrad still needs to be orthonormalized in the metric


# sense:


metric.GramSchmidt(pos, fourvel, eu, ef, el);


# Then we just need to attach the tetrad to the Screen:


scr.observerKind('FullySpecified')


scr.setObserverPos(pos)


scr.fourVel(fourvel)


scr.screenVector1(el)


scr.screenVector2(eu)


scr.screenVector3(ef)


# Perform ray-tracing as usual:


results=sc.rayTrace()


plt.imshow(results['Intensity'], origin='bottom')


plt.show()
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9 Extending GYOTO


This section is currently under construction.
GYOTO can be extended easily by adding new Metric, Astrobj, and Spectrum classes.


Such classes can be written in the Python language (Sect. 9.1) or in C++, in which case
they are made available to Gyoto by cumpiling them into a GYOTO plug-in (Sect. 9.2).
The main GYOTO code-base already contain tree plug-ins:


� stdplug, which contain all the standard analytical metrics and all the standard
astrophysical object;


� python, which allows implementing new Metric, Astrobj, and Spectrum classes in
the Python 3 language;


� and lorene, which contains the numerical, LORENE-based metrics.


In addition, we maintain our own private plug-in, which contains experimental or yet
unpublished Astrobj and Metric classes. When we make a publication based on these
classes, we try to move them from our private plug-in to the relevant public plug-in. We
kindly request that you follow the same philosophy: whenever you write a new class and
make a publication out of it, please publish the code as free software, either on your own
servers or by letting us include it in GYOTO.


As soon as you write your own objects (especially if you do so in C++), you will
dependent on the stability of the GYOTO application programming interface, which is
subject to frequent changes. It will help us to help you maintain your code if you inform
us of such development: gyoto@sympa.obspm.fr. In addition, we try to maintain a
stable branch in our github repository (http://github.com/gyoto/Gyoto). Code on
this branch should remain API-and ABI-compatible with the latest o�cial release.


9.1 Extending in Python


The `python' plug-in allows writting derived classes in Python rather than C++.
This is the easiest approach and lets you set-up your new objects in just a few lines


of code, without the need for setting-up a plug-in, compiling it frequently during your
deverlopment cycle. However, there is a cost in terms of code execution speed. This code
is usually negligible to moderate for classes implementing the Astrobj and Spectrum


interfaces, but it is major for classes implementing the Metric interface. This is because
the Metric methods are evaluated several times per iteration when iterating geodesics,
while the Astrobj and Spectrum methods are evaluated less frequently.


To use your Python classes, simply load the Python plug-in, for instance by setting
the GYOTO_PLUGINS environment variable to include the �python�8 plug-in (see Sect. 9.6).
Then tell the plug-in about your module and class. For instance, in an XML �le:


8The actual name of the Gyoto plug-in will match that of the Python interpreter used for compiling
it. For instance, if Gyoto was configured with ./configure PYTHON=/usr/bin/python3.4, the plug-in
will be called python3.4 instead of python. This allows you to compile several versions of the plug-in,
that will run inside each of the Python interpreters.
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<Metric kind="Python">


Python module name for ``my_module.py'':


<Module>my_module</Module>


Class defined in ``my_module.py'':


<Class>my_class</Class>


Any parameters (foating point) ``my_class'' may need:


<Parameters>2.0 20.0</Parameters>


</Metric>


The Python class will need to implement a few methods, with the same name as
the C++ method it implements (except the C++ name operator() is translated as
__call__ in Python).


More information can be found in the doxygen-generated documentation for the
GyotoPython.h �le and in the plugins/python/doc/examples sub-directory of the source
code distribution.


9.2 Writing a C++ plug-in


A plug-in is merely a shared library which contains the object code for your new objects,
plus a special initialisation function. It is loaded into memory using dlopen() by the func-
tion Gyoto::loadPlugin(char const*const name, int nofail) (note that the upper
level function Gyoto::requirePlugin(char const*const name, int nofail) should
be used instead whenever applicable), implemented in lib/Register.C. The name argu-
ment will be used three times:


� the shared library �le must be called libgyoto-name.$suffix ($suffix is usually
.so under Linux, .dylib under Mac OS);


� the init function for your plug-in must be called either __Gyotoname Init or exactly
__GyotoPluginInit;


� each subcontractor registered by the init function (see below) will be tagged with
the plug-in name, so it is later possible to search for a registered subcontractor by
kind name and plugin name.


The role of the init function is to register subcontractors for your object classes so that
they can be found by name. For instance, assuming you want to bundle the Minkowski
metric (actually provided in the standard plug-in) in a plugin called myplugin, you would
write a C++ �le (whose name is not relevant, but assume MyPlugin.C) with this content:


#include "GyotoMinkowski.h"


using namespace Gyoto;


extern "C" void __GyotomypluginInit() {


Metric::Register("Minkowski", \&Metric::Subcontractor<Metric::Minkowski>);


}
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Likewise, you could register more metrics, astrophysical objects and spectra. Other
examples can be seen in the lib/StdPlug.C and lib/LorenePlug.C �les, and in the
plugins/python/ directory.


When building your plug-in, make sure MyPlugin.C ends up compiled with
lib/Minkowski.C (in this example) into a single shared library called
libgyoto-myplugin.so (assuming you work under Linux), and drop this �le somewhere
where Gyoto will �nd it at run-time. Gyoto will try to ldopen the plug-ins from the
following locations in order (some variables are de�ned in gyoto.pc, see below):


� wherever the run-time linker looks by default, which typically includes:


� any directory listed in the $LD_LIBRARY_PATH environment variable;


� /usr/local/lib/;


� /usr/lib/;


� ${localpkglibdir}/${GYOTO_SOVERS}/;


� ${localpkglibdir}/ (typically /usr/local/lib/gyoto);


� ${GYOTO_PLUGDIR}/, this is the directory where the standard plug-ins shipped with
Gyoto are installed (typically ${pkglibdir}/${GYOTO_SOVERS}/);


� ${pkglibdir}/ (typically /usr/local/lib/gyoto or /usr/lib/gyoto).


Note that ${localpkglibdir} is de�ned only when it makes sense (i.e. when Gyoto is
not itself installed under /usr/local).


GYOTO ships a pkg-con�g �le (gyoto.pc) which stores useful build-time information
such as the install pre�x and the plug-in su�x. This �le gets installed in the standard
location, by default /usr/local/lib/pkgconfig/gyoto.pc.


The Gyoto source code contains several examples of plug-ins. One of them is minimal-
istic and its only purpose is to illustrate how to build a plug-in, including an autoconf-
based build system that parses gyoto.pc. It is a good starting point for writing your own
plug-in. See the content of the subdirectory plugins/null/, in particular the README


�le.


9.3 Adding a new metric (Metric)


The simplest example for a Metric object is certainly the Minkowski class. Let's go
through the header �le that de�nes its interface (expunged from all this useless documen-
tation ;-)), we trust the reader to go see the corresponding .C �le:
Avoid multiple and recursive inclusion of header �les:


#ifndef __GyotoMinkowski_H_


#define __GyotoMinkowski_H_


Minkowski is a metric, include the Metric base class header �le:


#include <GyotoMetric.h>


Declare that our new class goes into the Gyoto::Metric namespace:
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namespace Gyoto {


namespace Metric { class Minkowski; }


}


Declare that Minkowski inherits from the base class:


class Gyoto::Metric::Minkowski


: public Gyoto::Metric::Generic


{


Each class must be friend with the corresponding SmartPointer class:


friend class Gyoto::SmartPointer<Gyoto::Metric::Minkowski>;


Minkowski has no private data, else we would put it here:


private:


Every class needs a constructor, which will at least populate the kind_ attribute of the
parent class and the kind of coordinate system (Cartesian-like or spherical-like):


public:


Minkowski();


The cloner is important, and easy to implement. It must provide a deep copy of an object
instance. It is used in the multi-threading case to make sure two threads don't tip on
each-other's toes, and in the Yorick plug-in (Sect. 3.2) when you want to make a copy of
an object rather than reference the same object:


virtual Minkowski* clone() const ;


Then come the two most important methods, which actually de�ne the mathematical
metric:


void gmunu(double g[4][4], const double * x) const ;


int christoffel(double dst[4][4][4], const double * x) const ;


The setParameter method is the one that interprets options from the XML �le. For
each XML entity found in the Metric section in the form
<ParName unit="unit_name">ParValueString</ParName>,
the method Metric::Generic::setParameters() will call
setParameter(ParName, ParValueString, unit_name):


virtual void setParameter(std::string, std::string, std::string);


setParameter() should interpret the parameters speci�c to this class and pass whatever
remains to the Generic implementation. setParameter() has a counterpart,
fillElement(), which is mostly used by the Yorick plug-in (Sect. 3.2) to dump an in-
memory object instance to text format (this is what allows gyotoy, Sect. 2.3, to write
its parameters to disk). This method must be compiled only if XML input/output is
compiled in:


30







#ifdef GYOTO_USE_XERCES


virtual void fillElement(FactoryMessenger *fmp);


#endif


The Minkowski implementation goes on with an alternate implementation of gmunu()


and christoffel(). For the purpose of this documentation, we will skip these additional
examples and close the header �le here:


};


#endif


For more details, see the GYOTO reference manual in doc/html/ or at http://gyoto.
obspm.fr/. There are a few other methods that are worthwhile reimplementing, such
as circularVelocity(), which allows getting accurate beaming e�ects for thin disks
and tori. Naturally, circularVelocity() can only be implemented if circular orbits
physically exist in this metric (else, the Keplerian approximation is readily provided by
the generic implementation). Some other low-level methods can be reimplemented, but
it is not necessarily a good idea.


Once you have implemented the new Metric, just make sure it is compiled into your
plug-in and initialised in the initialisation function (Sect. 9.2). For o�cial GYOTO code
(that does not depend on LORENE), this is done by adding your .C �le to
libgyoto_stdplug_la_SOURCES in lib/Makefile.am (and running autoreconf followed
by configure), and adding one line in __GyotostdplugInit in lib/StdPlug.C.


9.4 Adding a new spectrum (Spectrum)


Adding a new spectrum kind is almost the same as adding a metric.


9.5 Adding a new astrophysical target object (Astrobj)


Adding a new astronomical object kind is almost the same as adding a metric. However,
astronomical objects are more complex than metrics (they can have abundant hair). In-
stead of inheriting directly from the most generic base class, Gyoto::Astrobj::Generic,
you will save yourself a lot of e�ort if you are able to derive from one of the higher level
bases:


Astrobj::ThinDisk a geometrically thin disk (e.g. PageThorneDisk, PatternDisk);


Astrobj::UniformSphere a... uniform sphere (e.g. Star, FixedStar);


Astrobj::Standard any object whose boundary can be de�ned as an iso-surface of some
function of the coordinates, such as a sphere or a torus (e.g. UniformSphere,
Torus).


9.6 Using your new plug-in


There are several ways to instruct GYOTO to load your plug-in. You can set the environ-
ment variableGYOTO_PLUGINS9, with a command such as


9How to do it depends on your shell and is outside the scope of this manual.
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export GYOTO_PLUGINS=stdplug,myplugin


Alternatively, a list of plug-ins can be speci�ed on the command-line when using the
gyoto tool:


$ gyoto --plugins=stdplug,myplugin ...


$ gyoto -pstdplug,myplugin ...


A plug-in can also be speci�ed in the input XML �le for each section:


<Metric kind = "KerrBL" plugin="stdplug">


Finally, the Yorick interface (Sect. 3.2) has a function to explicitly load a GYOTO plug-in
at run-time:


> gyoto.requirePlugin("myplugin");


Once the plug-in is loaded, your new object kinds should be registered (that's the purpose
of the init function). To check that your objects are correctly register, you can use the
--list (or -l) option of the gyoto tool or the gyoto.listRegister() function of the
Yorick interface:


$ gyoto --list [input.xml]


$ gyoto -l [input.xml]


You can use then use your classes directly in an XML �le, using the name you provided
to the Register() function in the init function of the plug-in:


<Metric kind = "Minkowski" plugin="myplugin">


The Yorick interface can load any object from an XML description, an can also initialise
any object from its name:


> metric = gyoto.Metric("Minkowski", "myplugin");


If your object supports any options using the setParameter() method, these options can
also be set from within Yorick:


> metric, setparameter="ParName", "ParValueString", unit="unit_string";


If your want �ner access to your objects from the Yorick interface, you will need to provide
a Yorick plug-in around your GYOTO plug-in. Look at the content of the yorick/stdplug/
directory. For new o�cial GYOTO objects in the standard plug-in, it is fairly easy to provide
an interface directly inside our Yorick plug-in.


9.7 Quality assurance


It is customary to provide a test-suite for every new class in GYOTO. This normally
includes an example �le in doc/examples, which is ray-traced in the check target of
bin/Makefile.am. Usually, we also provide a new Yorick test �le called
yorick/check-myclass.i which is called from yorick/check.i. This is a good idea to
do so even if you don't intend on using the Yorick plug-in: at least, you can use this
interpreted interface to perform unit tests on your code in a more �ne-grained manner
than a full-featured ray-traced image.
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