Next: The Bernoulli Distribution, Previous: General Discrete Distributions, Up: Random Number Distributions [Index]
This function returns a random integer from the Poisson distribution with mean mu. The probability distribution for Poisson variates is,
p(k) = {\mu^k \over k!} \exp(-\mu)
for k >= 0.
This function computes the probability p(k) of obtaining k from a Poisson distribution with mean mu, using the formula given above.
These functions compute the cumulative distribution functions P(k), Q(k) for the Poisson distribution with parameter mu.