Next: Sorting vectors, Up: Sorting [Index]
The following function provides a simple alternative to the standard
library function qsort
. It is intended for systems lacking
qsort
, not as a replacement for it. The function qsort
should be used whenever possible, as it will be faster and can provide
stable ordering of equal elements. Documentation for qsort
is
available in the GNU C Library Reference Manual.
The functions described in this section are defined in the header file gsl_heapsort.h.
This function sorts the count elements of the array array, each of size size, into ascending order using the comparison function compare. The type of the comparison function is defined by,
int (*gsl_comparison_fn_t) (const void * a, const void * b)
A comparison function should return a negative integer if the first
argument is less than the second argument, 0
if the two arguments
are equal and a positive integer if the first argument is greater than
the second argument.
For example, the following function can be used to sort doubles into ascending numerical order.
int compare_doubles (const double * a, const double * b) { if (*a > *b) return 1; else if (*a < *b) return -1; else return 0; }
The appropriate function call to perform the sort is,
gsl_heapsort (array, count, sizeof(double), compare_doubles);
Note that unlike qsort
the heapsort algorithm cannot be made into
a stable sort by pointer arithmetic. The trick of comparing pointers for
equal elements in the comparison function does not work for the heapsort
algorithm. The heapsort algorithm performs an internal rearrangement of
the data which destroys its initial ordering.
This function indirectly sorts the count elements of the array array, each of size size, into ascending order using the comparison function compare. The resulting permutation is stored in p, an array of length n. The elements of p give the index of the array element which would have been stored in that position if the array had been sorted in place. The first element of p gives the index of the least element in array, and the last element of p gives the index of the greatest element in array. The array itself is not changed.
Next: Sorting vectors, Up: Sorting [Index]