Next: Irregular Modified Spherical Bessel Functions, Previous: Irregular Spherical Bessel Functions, Up: Bessel Functions [Index]
The regular modified spherical Bessel functions i_l(x) are related to the modified Bessel functions of fractional order, i_l(x) = \sqrt{\pi/(2x)} I_{l+1/2}(x)
These routines compute the scaled regular modified spherical Bessel function of zeroth order, \exp(-|x|) i_0(x).
These routines compute the scaled regular modified spherical Bessel function of first order, \exp(-|x|) i_1(x).
These routines compute the scaled regular modified spherical Bessel function of second order, \exp(-|x|) i_2(x)
These routines compute the scaled regular modified spherical Bessel function of order l, \exp(-|x|) i_l(x)
This routine computes the values of the scaled regular modified spherical Bessel functions \exp(-|x|) i_l(x) for l from 0 to lmax inclusive for lmax >= 0, storing the results in the array result_array. The values are computed using recurrence relations for efficiency, and therefore may differ slightly from the exact values.