Next: Real Generalized Symmetric-Definite Eigensystems, Previous: Complex Hermitian Matrices, Up: Eigensystems [Index]
The solution of the real nonsymmetric eigensystem problem for a matrix A involves computing the Schur decomposition
A = Z T Z^T
where Z is an orthogonal matrix of Schur vectors and T, the Schur form, is quasi upper triangular with diagonal 1-by-1 blocks which are real eigenvalues of A, and diagonal 2-by-2 blocks whose eigenvalues are complex conjugate eigenvalues of A. The algorithm used is the double-shift Francis method.
This function allocates a workspace for computing eigenvalues of n-by-n real nonsymmetric matrices. The size of the workspace is O(2n).
This function frees the memory associated with the workspace w.
This function sets some parameters which determine how the eigenvalue
problem is solved in subsequent calls to gsl_eigen_nonsymm
.
If compute_t is set to 1, the full Schur form T will be
computed by gsl_eigen_nonsymm
. If it is set to 0,
T will not be computed (this is the default setting). Computing
the full Schur form T requires approximately 1.5–2 times the
number of flops.
If balance is set to 1, a balancing transformation is applied
to the matrix prior to computing eigenvalues. This transformation is
designed to make the rows and columns of the matrix have comparable
norms, and can result in more accurate eigenvalues for matrices
whose entries vary widely in magnitude. See Balancing for more
information. Note that the balancing transformation does not preserve
the orthogonality of the Schur vectors, so if you wish to compute the
Schur vectors with gsl_eigen_nonsymm_Z
you will obtain the Schur
vectors of the balanced matrix instead of the original matrix. The
relationship will be
T = Q^t D^(-1) A D Q
where Q is the matrix of Schur vectors for the balanced matrix, and
D is the balancing transformation. Then gsl_eigen_nonsymm_Z
will compute a matrix Z which satisfies
T = Z^(-1) A Z
with Z = D Q. Note that Z will not be orthogonal. For this reason, balancing is not performed by default.
This function computes the eigenvalues of the real nonsymmetric matrix
A and stores them in the vector eval. If T is
desired, it is stored in the upper portion of A on output.
Otherwise, on output, the diagonal of A will contain the
1-by-1 real eigenvalues and 2-by-2
complex conjugate eigenvalue systems, and the rest of A is
destroyed. In rare cases, this function may fail to find all
eigenvalues. If this happens, an error code is returned
and the number of converged eigenvalues is stored in w->n_evals
.
The converged eigenvalues are stored in the beginning of eval.
This function is identical to gsl_eigen_nonsymm
except that it also
computes the Schur vectors and stores them into Z.
This function allocates a workspace for computing eigenvalues and eigenvectors of n-by-n real nonsymmetric matrices. The size of the workspace is O(5n).
This function frees the memory associated with the workspace w.
This function sets parameters which determine how the eigenvalue
problem is solved in subsequent calls to gsl_eigen_nonsymmv
.
If balance is set to 1, a balancing transformation is applied
to the matrix. See gsl_eigen_nonsymm_params
for more information.
Balancing is turned off by default since it does not preserve the
orthogonality of the Schur vectors.
This function computes eigenvalues and right eigenvectors of the
n-by-n real nonsymmetric matrix A. It first calls
gsl_eigen_nonsymm
to compute the eigenvalues, Schur form T, and
Schur vectors. Then it finds eigenvectors of T and backtransforms
them using the Schur vectors. The Schur vectors are destroyed in the
process, but can be saved by using gsl_eigen_nonsymmv_Z
. The
computed eigenvectors are normalized to have unit magnitude. On
output, the upper portion of A contains the Schur form
T. If gsl_eigen_nonsymm
fails, no eigenvectors are
computed, and an error code is returned.
This function is identical to gsl_eigen_nonsymmv
except that it also saves
the Schur vectors into Z.
Next: Real Generalized Symmetric-Definite Eigensystems, Previous: Complex Hermitian Matrices, Up: Eigensystems [Index]