Next: QAWS adaptive integration for singular functions, Previous: QAGI adaptive integration on infinite intervals, Up: Numerical Integration [Index]
This function computes the Cauchy principal value of the integral of f over (a,b), with a singularity at c,
I = \int_a^b dx f(x) / (x - c)
The adaptive bisection algorithm of QAG is used, with modifications to ensure that subdivisions do not occur at the singular point x = c. When a subinterval contains the point x = c or is close to it then a special 25-point modified Clenshaw-Curtis rule is used to control the singularity. Further away from the singularity the algorithm uses an ordinary 15-point Gauss-Kronrod integration rule.