Next: Multimin References and Further Reading, Previous: Multimin Algorithms without Derivatives, Up: Multidimensional Minimization [Index]
This example program finds the minimum of the paraboloid function defined earlier. The location of the minimum is offset from the origin in x and y, and the function value at the minimum is non-zero. The main program is given below, it requires the example function given earlier in this chapter.
int main (void) { size_t iter = 0; int status; const gsl_multimin_fdfminimizer_type *T; gsl_multimin_fdfminimizer *s; /* Position of the minimum (1,2), scale factors 10,20, height 30. */ double par[5] = { 1.0, 2.0, 10.0, 20.0, 30.0 }; gsl_vector *x; gsl_multimin_function_fdf my_func; my_func.n = 2; my_func.f = my_f; my_func.df = my_df; my_func.fdf = my_fdf; my_func.params = par; /* Starting point, x = (5,7) */ x = gsl_vector_alloc (2); gsl_vector_set (x, 0, 5.0); gsl_vector_set (x, 1, 7.0); T = gsl_multimin_fdfminimizer_conjugate_fr; s = gsl_multimin_fdfminimizer_alloc (T, 2); gsl_multimin_fdfminimizer_set (s, &my_func, x, 0.01, 1e-4); do { iter++; status = gsl_multimin_fdfminimizer_iterate (s); if (status) break; status = gsl_multimin_test_gradient (s->gradient, 1e-3); if (status == GSL_SUCCESS) printf ("Minimum found at:\n"); printf ("%5d %.5f %.5f %10.5f\n", iter, gsl_vector_get (s->x, 0), gsl_vector_get (s->x, 1), s->f); } while (status == GSL_CONTINUE && iter < 100); gsl_multimin_fdfminimizer_free (s); gsl_vector_free (x); return 0; }
The initial step-size is chosen as 0.01, a conservative estimate in this case, and the line minimization parameter is set at 0.0001. The program terminates when the norm of the gradient has been reduced below 0.001. The output of the program is shown below,
x y f 1 4.99629 6.99072 687.84780 2 4.98886 6.97215 683.55456 3 4.97400 6.93501 675.01278 4 4.94429 6.86073 658.10798 5 4.88487 6.71217 625.01340 6 4.76602 6.41506 561.68440 7 4.52833 5.82083 446.46694 8 4.05295 4.63238 261.79422 9 3.10219 2.25548 75.49762 10 2.85185 1.62963 67.03704 11 2.19088 1.76182 45.31640 12 0.86892 2.02622 30.18555 Minimum found at: 13 1.00000 2.00000 30.00000
Note that the algorithm gradually increases the step size as it successfully moves downhill, as can be seen by plotting the successive points.
The conjugate gradient algorithm finds the minimum on its second direction because the function is purely quadratic. Additional iterations would be needed for a more complicated function.
Here is another example using the Nelder-Mead Simplex algorithm to minimize the same example object function, as above.
int main(void) { double par[5] = {1.0, 2.0, 10.0, 20.0, 30.0}; const gsl_multimin_fminimizer_type *T = gsl_multimin_fminimizer_nmsimplex2; gsl_multimin_fminimizer *s = NULL; gsl_vector *ss, *x; gsl_multimin_function minex_func; size_t iter = 0; int status; double size; /* Starting point */ x = gsl_vector_alloc (2); gsl_vector_set (x, 0, 5.0); gsl_vector_set (x, 1, 7.0); /* Set initial step sizes to 1 */ ss = gsl_vector_alloc (2); gsl_vector_set_all (ss, 1.0); /* Initialize method and iterate */ minex_func.n = 2; minex_func.f = my_f; minex_func.params = par; s = gsl_multimin_fminimizer_alloc (T, 2); gsl_multimin_fminimizer_set (s, &minex_func, x, ss); do { iter++; status = gsl_multimin_fminimizer_iterate(s); if (status) break; size = gsl_multimin_fminimizer_size (s); status = gsl_multimin_test_size (size, 1e-2); if (status == GSL_SUCCESS) { printf ("converged to minimum at\n"); } printf ("%5d %10.3e %10.3e f() = %7.3f size = %.3f\n", iter, gsl_vector_get (s->x, 0), gsl_vector_get (s->x, 1), s->fval, size); } while (status == GSL_CONTINUE && iter < 100); gsl_vector_free(x); gsl_vector_free(ss); gsl_multimin_fminimizer_free (s); return status; }
The minimum search stops when the Simplex size drops to 0.01. The output is shown below.
1 6.500e+00 5.000e+00 f() = 512.500 size = 1.130 2 5.250e+00 4.000e+00 f() = 290.625 size = 1.409 3 5.250e+00 4.000e+00 f() = 290.625 size = 1.409 4 5.500e+00 1.000e+00 f() = 252.500 size = 1.409 5 2.625e+00 3.500e+00 f() = 101.406 size = 1.847 6 2.625e+00 3.500e+00 f() = 101.406 size = 1.847 7 0.000e+00 3.000e+00 f() = 60.000 size = 1.847 8 2.094e+00 1.875e+00 f() = 42.275 size = 1.321 9 2.578e-01 1.906e+00 f() = 35.684 size = 1.069 10 5.879e-01 2.445e+00 f() = 35.664 size = 0.841 11 1.258e+00 2.025e+00 f() = 30.680 size = 0.476 12 1.258e+00 2.025e+00 f() = 30.680 size = 0.367 13 1.093e+00 1.849e+00 f() = 30.539 size = 0.300 14 8.830e-01 2.004e+00 f() = 30.137 size = 0.172 15 8.830e-01 2.004e+00 f() = 30.137 size = 0.126 16 9.582e-01 2.060e+00 f() = 30.090 size = 0.106 17 1.022e+00 2.004e+00 f() = 30.005 size = 0.063 18 1.022e+00 2.004e+00 f() = 30.005 size = 0.043 19 1.022e+00 2.004e+00 f() = 30.005 size = 0.043 20 1.022e+00 2.004e+00 f() = 30.005 size = 0.027 21 1.022e+00 2.004e+00 f() = 30.005 size = 0.022 22 9.920e-01 1.997e+00 f() = 30.001 size = 0.016 23 9.920e-01 1.997e+00 f() = 30.001 size = 0.013 converged to minimum at 24 9.920e-01 1.997e+00 f() = 30.001 size = 0.008
The simplex size first increases, while the simplex moves towards the minimum. After a while the size begins to decrease as the simplex contracts around the minimum.