Next: Roots of Polynomials Examples, Previous: Cubic Equations, Up: Polynomials [Index]
The roots of polynomial equations cannot be found analytically beyond the special cases of the quadratic, cubic and quartic equation. The algorithm described in this section uses an iterative method to find the approximate locations of roots of higher order polynomials.
This function allocates space for a gsl_poly_complex_workspace
struct and a workspace suitable for solving a polynomial with n
coefficients using the routine gsl_poly_complex_solve
.
The function returns a pointer to the newly allocated
gsl_poly_complex_workspace
if no errors were detected, and a null
pointer in the case of error.
This function frees all the memory associated with the workspace w.
This function computes the roots of the general polynomial P(x) = a_0 + a_1 x + a_2 x^2 + ... + a_{n-1} x^{n-1} using balanced-QR reduction of the companion matrix. The parameter n specifies the length of the coefficient array. The coefficient of the highest order term must be non-zero. The function requires a workspace w of the appropriate size. The n-1 roots are returned in the packed complex array z of length 2(n-1), alternating real and imaginary parts.
The function returns GSL_SUCCESS
if all the roots are found. If
the QR reduction does not converge, the error handler is invoked with
an error code of GSL_EFAILED
. Note that due to finite precision,
roots of higher multiplicity are returned as a cluster of simple roots
with reduced accuracy. The solution of polynomials with higher-order
roots requires specialized algorithms that take the multiplicity
structure into account (see e.g. Z. Zeng, Algorithm 835, ACM
Transactions on Mathematical Software, Volume 30, Issue 2 (2004), pp
218–236).
Next: Roots of Polynomials Examples, Previous: Cubic Equations, Up: Polynomials [Index]