Next: Hypergeometric Functions, Previous: Gamma and Beta Functions, Up: Special Functions [Index]
The Gegenbauer polynomials are defined in Abramowitz & Stegun, Chapter 22, where they are known as Ultraspherical polynomials. The functions described in this section are declared in the header file gsl_sf_gegenbauer.h.
These functions evaluate the Gegenbauer polynomials C^{(\lambda)}_n(x) using explicit representations for n =1, 2, 3.
These functions evaluate the Gegenbauer polynomial C^{(\lambda)}_n(x) for a specific value of n, lambda, x subject to \lambda > -1/2, n >= 0.
This function computes an array of Gegenbauer polynomials C^{(\lambda)}_n(x) for n = 0, 1, 2, \dots, nmax, subject to \lambda > -1/2, nmax >= 0.