Next: Fitting robust linear regression example, Previous: Fitting regularized linear regression example 1, Up: Fitting Examples [Index]
The following example program minimizes the cost function
||y - X c||^2 + \lambda^2 ||x||^2
where X is the 10-by-8 Hilbert matrix whose entries are given by
X_{ij} = 1 / (i + j - 1)
and the right hand side vector is given by y = [1,-1,1,-1,1,-1,1,-1,1,-1]^T. Solutions are computed for \lambda = 0 (unregularized) as well as for optimal parameters \lambda chosen by analyzing the L-curve and GCV curve.
Here is the program output:
matrix condition number = 3.565872e+09 === Unregularized fit === residual norm = 2.15376 solution norm = 2.92217e+09 chisq/dof = 2.31934 === Regularized fit (L-curve) === optimal lambda: 7.11407e-07 residual norm = 2.60386 solution norm = 424507 chisq/dof = 3.43565 === Regularized fit (GCV) === optimal lambda: 1.72278 residual norm = 3.1375 solution norm = 0.139357 chisq/dof = 4.95076
Here we see the unregularized solution results in a large solution norm due to the ill-conditioned matrix. The L-curve solution finds a small value of \lambda = 7.11e-7 which still results in a badly conditioned system and a large solution norm. The GCV method finds a parameter \lambda = 1.72 which results in a well-conditioned system and small solution norm.
The L-curve and its computed corner, as well as the GCV curve and its minimum are plotted below.
The program is given below.
#include <gsl/gsl_math.h> #include <gsl/gsl_vector.h> #include <gsl/gsl_matrix.h> #include <gsl/gsl_multifit.h> #include <gsl/gsl_blas.h> static int hilbert_matrix(gsl_matrix * m) { const size_t N = m->size1; const size_t M = m->size2; size_t i, j; for (i = 0; i < N; i++) { for (j = 0; j < M; j++) { gsl_matrix_set(m, i, j, 1.0/(i+j+1.0)); } } return GSL_SUCCESS; } int main() { const size_t n = 10; /* number of observations */ const size_t p = 8; /* number of model parameters */ size_t i; gsl_matrix *X = gsl_matrix_alloc(n, p); gsl_vector *y = gsl_vector_alloc(n); /* construct Hilbert matrix and rhs vector */ hilbert_matrix(X); { double val = 1.0; for (i = 0; i < n; ++i) { gsl_vector_set(y, i, val); val *= -1.0; } } { const size_t npoints = 200; /* number of points on L-curve and GCV curve */ gsl_multifit_linear_workspace *w = gsl_multifit_linear_alloc(n, p); gsl_vector *c = gsl_vector_alloc(p); /* OLS solution */ gsl_vector *c_lcurve = gsl_vector_alloc(p); /* regularized solution (L-curve) */ gsl_vector *c_gcv = gsl_vector_alloc(p); /* regularized solution (GCV) */ gsl_vector *reg_param = gsl_vector_alloc(npoints); gsl_vector *rho = gsl_vector_alloc(npoints); /* residual norms */ gsl_vector *eta = gsl_vector_alloc(npoints); /* solution norms */ gsl_vector *G = gsl_vector_alloc(npoints); /* GCV function values */ double lambda_l; /* optimal regularization parameter (L-curve) */ double lambda_gcv; /* optimal regularization parameter (GCV) */ double G_gcv; /* G(lambda_gcv) */ size_t reg_idx; /* index of optimal lambda */ double rcond; /* reciprocal condition number of X */ double chisq, rnorm, snorm; /* compute SVD of X */ gsl_multifit_linear_svd(X, w); rcond = gsl_multifit_linear_rcond(w); fprintf(stderr, "matrix condition number = %e\n", 1.0 / rcond); /* unregularized (standard) least squares fit, lambda = 0 */ gsl_multifit_linear_solve(0.0, X, y, c, &rnorm, &snorm, w); chisq = pow(rnorm, 2.0); fprintf(stderr, "=== Unregularized fit ===\n"); fprintf(stderr, "residual norm = %g\n", rnorm); fprintf(stderr, "solution norm = %g\n", snorm); fprintf(stderr, "chisq/dof = %g\n", chisq / (n - p)); /* calculate L-curve and find its corner */ gsl_multifit_linear_lcurve(y, reg_param, rho, eta, w); gsl_multifit_linear_lcorner(rho, eta, ®_idx); /* store optimal regularization parameter */ lambda_l = gsl_vector_get(reg_param, reg_idx); /* regularize with lambda_l */ gsl_multifit_linear_solve(lambda_l, X, y, c_lcurve, &rnorm, &snorm, w); chisq = pow(rnorm, 2.0) + pow(lambda_l * snorm, 2.0); fprintf(stderr, "=== Regularized fit (L-curve) ===\n"); fprintf(stderr, "optimal lambda: %g\n", lambda_l); fprintf(stderr, "residual norm = %g\n", rnorm); fprintf(stderr, "solution norm = %g\n", snorm); fprintf(stderr, "chisq/dof = %g\n", chisq / (n - p)); /* calculate GCV curve and find its minimum */ gsl_multifit_linear_gcv(y, reg_param, G, &lambda_gcv, &G_gcv, w); /* regularize with lambda_gcv */ gsl_multifit_linear_solve(lambda_gcv, X, y, c_gcv, &rnorm, &snorm, w); chisq = pow(rnorm, 2.0) + pow(lambda_gcv * snorm, 2.0); fprintf(stderr, "=== Regularized fit (GCV) ===\n"); fprintf(stderr, "optimal lambda: %g\n", lambda_gcv); fprintf(stderr, "residual norm = %g\n", rnorm); fprintf(stderr, "solution norm = %g\n", snorm); fprintf(stderr, "chisq/dof = %g\n", chisq / (n - p)); /* output L-curve and GCV curve */ for (i = 0; i < npoints; ++i) { printf("%e %e %e %e\n", gsl_vector_get(reg_param, i), gsl_vector_get(rho, i), gsl_vector_get(eta, i), gsl_vector_get(G, i)); } /* output L-curve corner point */ printf("\n\n%f %f\n", gsl_vector_get(rho, reg_idx), gsl_vector_get(eta, reg_idx)); /* output GCV curve corner minimum */ printf("\n\n%e %e\n", lambda_gcv, G_gcv); gsl_multifit_linear_free(w); gsl_vector_free(c); gsl_vector_free(c_lcurve); gsl_vector_free(reg_param); gsl_vector_free(rho); gsl_vector_free(eta); gsl_vector_free(G); } gsl_matrix_free(X); gsl_vector_free(y); return 0; }
Next: Fitting robust linear regression example, Previous: Fitting regularized linear regression example 1, Up: Fitting Examples [Index]